Warm dense matter is of high current interest for many applications, including astrophysics, material science, and fusion research. Yet, the accurate description of electronic correlation effects at these conditions is most difficult, and often computationally intensive ab-initio methods have to be used [1]. The most accurate approach is given by the quantum Monte Carlo (QMC) technique, which...
Libxc, one of a few available libraries for exchange-correlation functionals, currently contains well above 100 different LDA, GGA, hybrid GGA, meta-GGA, and hybrid meta-GGA functionals. The aim of this talk is to show the results of trying quite a few of these for different warm dense matter states and different properties. When possible, quantum Monte Carlo data will be used to benchmark the...
Density functional theory (DFT) is an in-principle exact theoretical framework for any many-body system. It is particularly relevant for the warm dense matter (WDM) regime, where large systems have to be addressed at the electron-electron level, at relatively high temperatures and pressures. The high-temperature regime requires addressing not only the ground state, but (many) excited states of...
Real-time time-dependent density functional theory (TDDFT) has been wildly successful in many contexts, but it is likely to remain far too expensive to be used in tabulating materials properties for the plasma physics codes used to design inertial fusion experiments or other systems with many orders of magnitude of variation in density and temperature. For that task, average atom (AA) models...
Understanding electronic transport properties of materials under high temperatures and pressures is essential for constraining geophysical processes and provides indispensable insights useful for novel materials discovery. The difficulty of measuring the electrical conductivity of iron under Earth-core conditions reliably in experiments [1] calls for sophisticated theoretical methods that can...
The determination of thermoelectric transport coefficients of dense, partially ionized plasmas is a great challenge for both experiment and theory. In the past two decades, density functional theory (DFT) has evolved to an efficient tool for making theoretical predictions of properties of dense plasmas. Many of these are of high relevance for modelling the interior states, evolution, and...