Nanostructured targets, with a brush like geometry (e.g., nanowires NWs), showed improved laser absorption both in particle-in-cell simulations and experimental studies on laser-driven particle acceleration. Using aligned nanowires with sub-wavelength diameter the maximum proton energy can be enhanced up to 2-3 times, due to increased hot electron density and temperature. By controlling the...
Laser-driven ion sources [1] represent a promising alternative over conventional ion and electron accelerators, with potential applications ranging from the medical field [2] to nuclear and material science [3]. Compact laser-driven ion sources would be a valuable asset in many of those applications, exploiting tabletop laser systems—in the range of tens of TW and capable of high repetition...
The interactions of ultra-intense lasers with solid targets with nanowires received a lot of attention because they appear to show potentials to increase the laser light absorption rate. Laser-nanowire interactions open up various applications such as attosecond bunch generation, enhanced x-ray generation, brilliance gamma-ray yield, as well as efficient micro fusion. Despite many studies on...