
The Julia CI ecosystem
Spoiling scientific developers for good

Michael Schlottke-Lakemper

Applied and Computational Mathematics, RWTH Aachen University

High-Performance Computing Center Stuttgart (HLRS), University of Stuttgart

deRSE24, Würzburg, Germany, 6th March 2024

1 / 12



Back in the days (10 years ago)
I Numerical simulation framework for CFD (≥250k SLOC, C++)

I License: no (closed source)

I Version control: Subversion (hosted locally)

I Continuous testing: no

I Documentation: somewhat

I Code reviews/commit guidelines: no

Commit procedure for trunk
1) Manually run testcases against trunk branch.
2) Manually run testcases against branch.
2) Merge if no additional tests fail.

2 / 12



Back in the days (10 years ago)
I Numerical simulation framework for CFD (≥250k SLOC, C++)

I License: no (closed source)

I Version control: Subversion (hosted locally)

I Continuous testing: no

I Documentation: somewhat

I Code reviews/commit guidelines: no

Commit procedure for trunk
1) Manually run testcases against trunk branch.
2) Manually run testcases against branch.
2) Merge if no additional tests fail.

2 / 12



Fast forward to 2024

I Numerical simulation framework for CFD (≥50k SLOC, Julia)

I License: MIT

I Version control: Git (hosted on GitHub)

I Continuous testing: >20 jobs (Linux/macOS/Windows, serial/parallel, . . . )

I Documentation: yes

I Code reviews/commit guidelines: yes

3 / 12



Some CI workflows in Trixi.jl

1. Testing and code coverage

2. Documentation
3. Compatibility bounds

4. Code formatting

5. Spelling

6. Release process

7. Review checklist
8. Downstream tests

æ widely used best practice workflows

https://github.com/trixi-framework/Trixi.jl

4 / 12

https://github.com/trixi-framework/Trixi.jl


Some CI workflows in Trixi.jl

1. Testing and code coverage

2. Documentation
3. Compatibility bounds

4. Code formatting

5. Spelling

6. Release process

7. Review checklist
8. Downstream tests

æ widely used best practice workflows

https://github.com/trixi-framework/Trixi.jl

4 / 12

https://github.com/trixi-framework/Trixi.jl


Run tests and verify code coverage

I Julia has built-in testing module
I Run tests of Julia package manager

(also o�ine)
I GitHub Actions scripts facilitate easy

CI setup

Badges in README.md Minimum workflow file for running Julia tests

5 / 12



Build documentation
I Standard in Julia: Documenter.jl
I Markdown-based, with in-source docs via docstrings
I Versioned docs for releases

6 / 12



Update compatibility bounds

I Julia package manager uses semantic
versioning (v1.2.3)

I CompatHelper.yml: increase upper
bounds on new upstream releases

I Downgrade.yml: increase lower
bounds to minimum supported version

Project.toml for P4est.jl

7 / 12



Ensure code formatting and spelling

I Automatic code formatting via JuliaFormatter.jl (modelled on clang-format)

I Automatic spell checking using crate-ci/typos GitHub Action

I Reduces e�ort for developers and reviewers

8 / 12



Automated release process
I Automated package registration

process

Release process
1. Update version in Project.toml

2. Trigger registration via comment
3. Auto-creation of PR to registry
4. Upon registry update: tag GitHub

release with notes

Registrator comment (top),

registry PR (center),

release notes (bottom)

9 / 12



Add review checklist
I Compiled by entire team (junior and senior members)
I Helps both reviewers and developers

10 / 12



Run downstream tests

I Run reduced testset for selected downstream packages

I Needs explicit support from downstream software

I Brings flexibility for code and repository management

11 / 12



Summary

I Julia programming language has elaborate CI ecosystem

I Great support for GitHub, limited support for GitLab

I Many CI workflows expected by users

Ease-of-use + wide-spread utilization of CI = spoiled users/developers

12 / 12



Summary

I Julia programming language has elaborate CI ecosystem

I Great support for GitHub, limited support for GitLab

I Many CI workflows expected by users

Ease-of-use + wide-spread utilization of CI = spoiled users/developers

12 / 12


