The Julia Cl ecosystem

Spoiling scientific developers for good

Michael Schlottke-Lakemper

Applied and Computational Mathematics, RWTH Aachen University
High-Performance Computing Center Stuttgart (HLRS), University of Stuttgart

deRSE24, Wiirzburg, Germany, 6™ March 2024

1/12

Back in the days (10 years ago)
» Numerical simulation framework for CFD (~250k SLOC, C++)

» License: no (closed source)

» Version control: Subversion (hosted locally)
» Continuous testing: no

» Documentation: somewhat

» Code reviews/commit guidelines: no

2/12

Back in the days (10 years ago)
» Numerical simulation framework for CFD (~250k SLOC, C++)
» License: no (closed source)
» Version control: Subversion (hosted locally)
» Continuous testing: no
» Documentation: somewhat

» Code reviews/commit guidelines: no

Commit procedure for trunk

1) Manually run testcases against trunk branch.
2) Manually run testcases against branch.
2) Merge if no additional tests fail.

2/12

Fast forward to 2024

» Numerical simulation framework for CFD (~50k SLOC, Julia)

v

License: MIT

» Version control: Git (hosted on GitHub)

» Continuous testing: >20 jobs (Linux/macOS/Windows, serial/parallel, ...)
» Documentation: yes

» Code reviews/commit guidelines: yes

3/12

Some CI workflows in Trixi.jl

© N o o ~ W=

Testing and code coverage

Documentation

Compatibility bounds
Code formatting
Spelling

Release process

Review checklist

Downstream tests

https://github.com/trixi-framework/Trixi.jl

4/12

https://github.com/trixi-framework/Trixi.jl

Some CI workflows in Trixi.jl

Testing and code coverage

Documentation

Compatibility bounds

Code formatting
Spelling
Release process

Review checklist

© N o o ~ W=

Downstream tests

https://github.com/trixi-framework/Trixi.jl

— widely used best practice workflows

4/12

https://github.com/trixi-framework/Trixi.jl

Run tests and verify code coverage

» Julia has built-in testing module

» Run tests of Julia package manager
(also offline)

» GitHub Actions scripts facilitate easy
Cl setup

CI |passing codecov | 96% | coverage [96% |

Badges in README .md

on:
push:
branches:
- main
pull_request:

jobs:
test:
runs-on: ubuntu-latest

steps:
- uses: actions/checkout@v4
— uses: julia-actions/setup-julia@vl
- uses: julia-actions/julia-buildpkg@vl
- uses: julia-actions/julia-runtest@vl
- uses: julia-actions/julia-processcoverage@vl
— uses: codecov/codecov—action@v2
with:
files: lcov.info

Minimum workflow file for running Julia tests

5/12

Build documentation
» Standard in Julia:

Documenter |l

» Markdown-based, with in-source docs via docstrings

» Versioned docs for releases

© Referencing
© Authors
© License and contributing

o Acknowledgments

Getting started
Overview
Visualization
Restart simulation

Tutorials
Introduction

1 First steps in Trixijl

2 Behind the scenes of a simulation

setup

Version | v0.7.0

Trixi.jl

docs table docs dev! chat sick (EXTRBHETY Ot [FRBBRG) - codecov JBEHE) coverage [BEHR) 6 teste with[AGUR

License [MiT) DOI 10.5281/zenodo.3996439

is a numerical simulation framework for conservation laws written in Julia. A key objective for the framework
s to be useful to both scientists and students. Therefore, next to having an extensible design with a fast
implementation, Trixijl is focused on being easy to use for new or inexperienced users, including the installation and
postprocessing procedures. Its features include:

« 1D, 2D, and 3D simulations on
© Cartesian and curvilinear meshes
> Conforming and non-conforming meshes
Structured and unstructured meshes
o Hierarchical quadtree/octree grid with adaptive mesh refinement
> Forests of quadtrees/octrees with via
« High-order accuracy in space and time
« Discontinuous Galerkin methods
> Kinetic energy-preserving and entropy-stable methods based on flux differencing
> Entropy-stable shock capturing
o Positivity-preserving limiting

+ Compatible with the

6/12

Update compatibility bounds

» Julia package manager uses semantic

versioning (v1.2.3)

» CompatHelper.yml: increase upper
bounds on new upstream releases

» Downgrade.yml: increase lower

bounds to minimum supported version

name = "P4est"
uuid = "7d669430-f675-4ae7-b43e-fab78ec5a902"
authors = ["Michael Schlottke-Lakemper <michael@sloede.com>", "Hend|

version "0.4.13-pre"

[deps]

CEnum = "fa961155-64e5-5f13-b@3f-caf6b980ea8d2"

MPI = "da@4elcc-30fd-572f-bb4f-1f8673147195"
MPIPreferences = "3da@fdf6-3ccc-4flb-acd9-58baa6c99267"
P4est_jll = "6b5al5aa-cf52-5330-8376-5e5d90283449"
Preferences = "21216c6a-2e73-6563-6€65-726566657250"
Reexpor 189a3867-3050-52da-a836-e630ba90ab69"

UUIDs = "cf7118a7-6976-5bla-9a39-7adc72f591a4"

[compat]

CEnum = "0.4, 0.5"
MPI = "0.20"
MPIPreferences
Pdest_jll =
Preferences

julia = "1.6"

Project.toml for P4est.jl

7/12

Ensure code formatting and spelling

» Automatic code formatting via JuliaFormatter.jl (modelled on clang-format)
» Automatic spell checking using crate-ci/typos GitHub Action

» Reduces effort for developers and reviewers

8/12

Automated release process

> Automated package registration

process

Release process

1.

2.
3.
4

Update version in Project.toml
Trigger registration via comment
Auto-creation of PR to registry
Upon registry update: tag GitHub
release with notes

Registrator comment (top),
registry PR (center),

release notes (bottom)

.
ﬁ ranocha

@JuliaRegistrator

Registration pull request created:

New version: Trixi v0.7.0
T+ Merged

(v}

Trixi v0.7.0

Merged pull requests:

« Make min_max_speed_davis default wave speed estimate for FluxHLL() () (@DanielDoehring)

« Own sqrt and log returning Na for "correct" multi-thread behaviour (#1751) (@DanielDoehring)

9/12

Add review checklist

» Compiled by entire team (junior and senior members)

» Helps both reviewers and developers

github-actions

Review checklist

This checklist is meant to assist creators of PRs (to let them know what reviewers will typically look for) and reviewers (to
guide them in a structured review process). Items do not need to be checked explicitly for a PR to be eligible for merging.

Purpose and scope

[] The PR has a single goal that is clear from the PR title and/or description.
[CJ All code changes represent a single set of modifications that logically belong together.

[CJ No more than 500 lines of code are changed or there is no obvious way to split the PR into multiple PRs.

Code quality

[J The code can be understood easily.

[J Newly introduced names for variables etc. are self-descriptive and consistent with existing naming conventions.

10/12

Run downstream tests

» Run reduced testset for selected downstream packages
» Needs explicit support from downstream software

» Brings flexibility for code and repository management

11/12

Summary

» Julia programming language has elaborate Cl ecosystem
» Great support for GitHub, limited support for GitLab

» Many Cl workflows expected by users

12/12

Summary

» Julia programming language has elaborate Cl ecosystem
» Great support for GitHub, limited support for GitLab

» Many Cl workflows expected by users

Ease-of-use + wide-spread utilization of Cl = spoiled users/developers

12/12

