
Weierstrass Institute
for Applied Analysis and Stochastics

Pipeline dependencies and layered test suites
Jan Philipp Thiele1

1Weierstrass Institute Berlin
March 06, 2024, deRSE24 Würzburg



Motivation
deRSE24, Pipeline dependencies and layered test suites



It all boils down to time and ressources
 Ideally tests run on each pull request (PR = GitLab merge request)
 They have to run somewhere
 Local GitLab - Own hardware is the limit
 GitHub - Concurrent jobs, etc. limited by plan (free, pro, enterprise)
 Hybrid – avoid GitHub limits by own hardware (Talk at 1:30 by J. Fritz & T. Gruber)
 Hybrid alternatives: Jenkins CI, CDash, etc.
 Test results important for decision on PR 
 New commits trigger new test runs
 Large testsuite slows integration of features
 Hardware needs to run everything everytime

Way out? Don‘t run everything on each occasion, but What? When? And how?

The problem
in more detail

deRSE24, Pipeline dependencies and layered test suites



Test different parts or configurations at different points in time
Three typical layers
 On each pull request automatically
 Quick(er) tests
 Quick code quality checks: Formatting, linting, etc.
 After human inspection
 Limit what gets tested on `private` hardware when linked to GitHub
 Only things that are considered `ready to integrate`
 Automatically test main branch on a fixed interval (e.g. every day at 0:00)
 Combines all merged PRs in set time interval
 Full testsuite
 On as many configurations as feasible and sensible
 Notify on failing builds or tests and keep track
 Targeted tracking of `offending` commits based on failed tests

Layered Testsuites
The shorter answer

deRSE24, Pipeline dependencies and layered test suites



Analytical side: reducing complexity
How to decide what to test in which configuration?
 Be aware of combinatorial explosion
 Use parameter Matrices 
 Code analysis

Technical side
How to split up the testing?
 Use labels or other manual triggers
 Hunting the `offending` commit
 Keeping track
 Notifying everyone about failing regression tests

Next 
steps

deRSE24, Pipeline dependencies and layered test suites



Combinatorial
Explosion

deRSE24, Pipeline dependencies and layered test suites

Each set of options we want to support/test 
multiplies the number of setups by its size. 
Some common options:
 3 operating systems (OS) = 3
 2-3 compilers per OS = 8
 3 compiler versions each = 24
 3 versions of 1 SW library = 72
 Other dependencies?
 Build parameters?
 Sequential + OpenMP + MPI?
 GPU support?
 Build Tools (Make, Ninja, etc.)?
 A huge amount of options to test
Does each make sense? Possibly not



GCC Clang MVSC
OS Parallel config 11.4 12.3 13.2 15 16 17

Linux
Sequential Not

availableOpenMP
MPI Your PC

Windows
Sequential
OpenMP
MPI

MacOS
Sequential Not 

availableOpenMP
MPI

Parameter/Configuration
Matrices

deRSE24, Pipeline dependencies and layered test suites

Modify as needed
e.g. add rows or cols

Use in planning/survey
 Common combinations?
 Unavailable options?
 Compare timings to see 

which configs can be 
tested often

Use in result analysis
 Commonalities?
 System specific?
 Compiler specific?

An example for a configuration matrix



Sometimes we can anticipate which core functions we should test.
Profilers and code coverage analysis can help us choose and design tests
Profilers
 Provides timings and call graphs
 Which function is called often and how long does it take?
 Caveats: 
 Needs actual application code(s) 
 Has a sample bias

Code coverage tools
 Which lines and functions are covered by tests?
 Assists manual minmaxing: 
 Find minimal set of tests with maximum (sensible) coverage
 Not only number but also runtime of tests

Code Analysis
Tooling and automation

deRSE24, Pipeline dependencies and layered test suites



It‘s easy to overengineer the whole process!
Be mindful of the actual needs of the community
 Use user interaction (e.g. in issues or surveys)
 Which software is actually in use
 Are there issues with getting the software to run somewhere?
 Make your software citable
 Check citing papers for use cases (Best case: shared user code)
 Find out who is using your software
 Be open about (current) limitations
 Use GitHub badges to show which configs are supported by tests
 Use the Readme to inform about specific dependencies
 Tell users how to suggest changes

The human factor
Survey the user community

deRSE24, Pipeline dependencies and layered test suites



Analytical side: reducing complexity
How to decide what to test in which configuration?
 Be aware of combinatorial explosion
 Use parameter Matrices 
 Code analysis

Technical side
How to split up the testing?
 Use labels or other manual triggers
 Hunting the `offending` commit
 Keeping track
 Notifying everyone about failing regression tests

Next 
steps

deRSE24, Pipeline dependencies and layered test suites



Maybe don‘t allow every PR to run on self-hosted CI
 Costs your own ressources
 PR is in a `sensible` state
 Some person has to look at it
Jobs can be set to manual, but that has two problems
 Needs manual restart on new push
 Each job has to be started individually
Alternative: Conditional Expressions on GitHub and GitLab
 Most common: ‚on: push‘, ‚on: pull request‘
 But more fine grained options with labels and if statements
 Have a specific label, e.g. „ready to test“
 Statement - if: ${{ github.event.label.name == 'ready to test‘ }}
 Many jobs can share this specific trigger
 Has to be set only once per PR

Starting tests on pull requests
based on triggers

deRSE24, Pipeline dependencies and layered test suites



Many tools like CDash allow you to setup and track many configurations.
 Full test suite runs can be scheduled
 Shows results for each configuration and tested commit
 By stage: configure, build, test
 By result: warning, error, pass, fail, not run
 Automate hunting for the offending commit
 You have previous result information – New error or not?
 Targeted searching – Only run the failing tests on older commits
 Use REST API to open issues
 Notification that tests on configuration have failed
 Include useful information
 Which commit(s) are the likely culprits?
 Who authored them?
 Close issues when the tests pass again

Having a dedicated
regression testing server

deRSE24, Pipeline dependencies and layered test suites



A C++ library implementing these measures is deal.II (github.com/dealii/dealii)
There are three layers
1. GitHub Actions (most with GCC compiler and quick testsuite)
 Static checks: clang-tidy and indent/formatting with clang-format
 Linux debug: parallel, intel oneapi, cuda, cuda clang; release: serial (sequential)
 OSX: serial, parallel with 64bit indices
 Windows: MSVC 2019, MSVC 2020

2. Jenkins server (full testsuite)
 GCC serial, GCC parallel, CUDA, OSX
 Only runs when „ready to test“ label is set

Layered test suites
Example: deal.II

deRSE24, Pipeline dependencies and layered test suites



3. CDash server 23 different configurations
 Overview page with different filters

Layered test suites
Example: deal.II

deRSE24, Pipeline dependencies and layered test suites



 Automatically opens an issue on fail
 List revisions (runs)
 Failed configurations
 Possible culprits (merges)
 Tags authors and mergers
 Issue gets pinned
 Automatically closes on clean run
 Automatically reopens if closed

and new revisions don‘t fix

Layered test suites
Example: deal.II

deRSE24, Pipeline dependencies and layered test suites



Thank you for your attention!
Questions?

deRSE24, Pipeline dependencies and layered test suites


	Foliennummer 1
	Motivation
	The problem�in more detail
	Layered Testsuites�The shorter answer
	Next �steps
	Combinatorial�Explosion
	Parameter/Configuration�Matrices
	Code Analysis�Tooling and automation
	The human factor�Survey the user community
	Next �steps
	Starting tests on pull requests�based on triggers
	Having a dedicated	�regression testing server
	Layered test suites�Example: deal.II
	Layered test suites�Example: deal.II
	Layered test suites�Example: deal.II
	Foliennummer 16

