
TESTING

06.03.2024 I JAKOB FRITZ, ROBERT SPECK I DERSE24 WÜRZBURG

Unit Tests and Beyond

AIM OF THIS TALK

 Give overview of the field of software-testing
✅ Name-dropping to help what kewords to search for, when you write your tests
✅ Encourage to use tests
✅ Help with decision which kind of tests to run

What this talk will not do:
❌ Write a test with you for your specific code
For how to create tests for your code have a look at the
“HiRSE Summer of Testing” on Youtube: https://go.fzj.de/Hirse_summer_of_testing

06. March 2024 Page 2

OVERVIEW

Scopes of tests

• Unit Tests
• Integration Tests
• End-to-End Tests

Strategies for tests

• Golden Master
tests

• Property based
testing

• Fuzzy testing
• Mutation testing

06. March 2024 Page 3

SCOPES OF TESTS
Why testing?

Based on: https://testing.googleblog.com/2015/04/just-say-no-to-more-end-to-end-tests.html

Reason for testing:

è Finding bugs

Reason for finding bugs:
 è Making the user happy (generally) / making the results reproducible (in science)

So what makes a user happy / the results reproducible?

Test added è Test fails è Bug reported è Bug fixed

06. March 2024 Page 4

SCOPES OF TESTS

E2E
test

Integration
test

Unit test

06. March 2024 Page 5

Based on: https://testing.googleblog.com/2015/04/just-say-no-to-more-end-to-end-tests.html

Unit test End-to-End test

Fast

Reliable

Isolates failures

Simulates a
real user 70%

20%

10%

SCOPES OF TESTS

• Idea: Test a single function

• Fast execution & easy to locate bugs

• Ideally hermetic tests

• Most of the tests should be Unit tests (~70%)

06. March 2024 Page 6

Unit tests

E2E test

Integration
test

Unit test

SCOPES OF TESTS

• Idea: Test combination / interaction of functions (usually only a few; often only 2)

• Slower execution compared to Unit tests and harder to use to localize bugs

• Either using Mock-ups or real other components

• Can induce flakiness (as relying on other components; network; …)

• Should be fewer tests than unit-tests (~20%)

06. March 2024 Page 7

Integration tests

E2E test

Integration
test

Unit test

SCOPES OF TESTS

• Idea: Test whole Software/system

• Even slower execution compared to Unit and Integration tests

• Harder to localize bugs

• Not hermetic (by definition)

• Should be the fewest tests (~10%)

06. March 2024 Page 8

End-to-End tests

E2E test

Integration
test

Unit test

STRATEGIES FOR TESTS

• What it is:

• Classic approach

• Providing input and expected output
& comparing real to expected output

• When to use it:

• To test specific cases (e.g. examples)
• To test complex cases when it is hard to specify all

details (e.g. complex input files)
• Downsides:

• Limited test scope

• When using files: watch out for timestamps

• How to use it:

• Prepare input and output (variables or files)

• Start function with given input
• Check if created output equals expected output

• Examples:

• assert sum(2,3)==5
• create_db()
assert new.db == prepared_example.db

Packages:

• For Python: pytest
• For C++: google-test

06. March 2024 Page 9

Golden Master testing

STRATEGIES FOR TESTS

• What it is:

• Check not for specific output, but for properties of
the output

• When to use it:

• To generalize test cases

• To find edge-cases
• Downsides:

• Difficult when creating complex data-structures
• An addition rather than replacement for golden

master tests (so more effort, but not more line
coverage)

• How to use it:

• Define properties of input

• Start function with (automatically) created input
• Check if output satisfies checks

• Examples:

• @given(list(characters()))
def TestAmazingSort(input):
 output = AmazingSort(input)
 assert set(input) == set(ouput)
 assert isSorted(output)

06. March 2024 Page 10

Property based testing

Further reading: https://hypothesis.works/articles/what-is-property-based-testing/
https://en.wikipedia.org/wiki/QuickCheck

STRATEGIES FOR TESTS

• What it is:

• Fuzzy testing throws arbitrary input at your function
to see if the function returns unexpected errors

• Similar to property based testing, but normally
wider input and less precise output check

• When to use it:
• To test functions for robustness against user- or

interaction errors
• To find edge cases / strange bugs nobody

anticipated and tested for

• Downsides:

• Rather a smoke test

• Not testing for correctness, but only for failures

06. March 2024 Page 11

Fuzzy testing

Further reading: https://hypothesis.works/articles/what-is-property-based-testing/
https://en.wikipedia.org/wiki/American_fuzzy_lop_(fuzzer)

STRATEGIES FOR TESTS

• What it is:

• “Mutation testing is a technique for systematically
mutating source code in order to validate test
suites. It makes small changes to a program's
source code and then runs a test suite; if the test
suite ever succeeds on mutated code then a flag is
raised” (https://www.oreilly.com/pub/e/3560)

• “Essentially, mutation testing is a test of the alarm
system created by the unit tests.”
(mutatest.readthedocs.io/en/latest/install.html#mut
ation-trial-process)

• What it does it:

• Alter your code and check if tests now fail

• When to use it:

• When added many (unit) tests to have high
coverage

• When unsure how well the tests actually test the
code

• To see if tests are sensitive enough to detect
(unintended) changes in the code

• Packages to use (not tested by me):
• Mutatest: https://mutatest.readthedocs.io/en/latest/

(python)

• Mutmut: https://github.com/boxed/mutmut (python)

06. March 2024 Page 12

Mutation testing

https://www.oreilly.com/pub/e/3560
https://mutatest.readthedocs.io/en/latest/
https://github.com/boxed/mutmut

SUMMARY

Scopes of tests

• Focus on Unit Tests
• A few Integration

Tests
• Very few End-to-End

Tests

Strategies for tests

• Compare precise
results

• Check properties
• Test for raised errors
• How precise are your

tests

06. March 2024 Page 13

06. March 2024 Page 14

Thank you for your attention!
I’m happy to answer questions!

Feel free to reach me: j.fritz@fz-juelich.de

