


```
product ← 1
      ← 10
    for (i in 1:(N-1)) {
      product ← product * i
10
    cat("Product: ", product, "\n")
```

flowR: A Program Slicer for the R Programming Language

deRSE '24 | Ulm University | Florian Sihler and Prof. Matthias Tichy | March 6, 2024

• R is mainly designed for statistical computing [1]

- R is mainly designed for statistical computing^[1]
 - Heavily used in research (e.g., social science)[2]

[2] Trisovic et al., "A Large-Scale Study on Research Code Quality and Execution" (2022, Nature Publishing Group)
[1] https://cran.r-project.org/

- R is mainly designed for statistical computing^[1]
 - Heavily used in research (e.g., social science)[2]
 - Ranks 6th on PYPL^[3]

F. Sihler (Ulm University) flowR — Introduction

^[3] https://pypl.github.io/ [archived]

^[2] Trisovic et al., "A Large-Scale Study on Research Code Quality and Execution" (2022, Nature Publishing Group)

- R is mainly designed for statistical computing^[1]
 - Heavily used in research (e.g., social science)^[2]
 - Ranks 6th on PYPL^[3]
 - Over 20 000 packages on CRAN^[1]

[3] https://pypl.github.io/ [archived]

F. Sihler (Ulm University) flowR — Introduction

^[2] Trisovic et al., "A Large-Scale Study on Research Code Quality and Execution" (2022, Nature Publishing Group)

- R is mainly designed for statistical computing^[1]
 - Heavily used in research (e.g., social science)^[2]
 - Ranks 6th on PYPL^[3]
 - Over 20 000 packages on CRAN^[1]
- Most users are from non-computer-science domains

https://pypl.github.io/ [archived]

F. Sihler (Ulm University) flowR — Introduction

^[2] Trisovic et al., "A Large-Scale Study on Research Code Quality and Execution" (2022, Nature Publishing Group)

- R is mainly designed for statistical computing^[1]
 - Heavily used in research (e.g., social science)^[2]
 - Ranks 6th on PYPL^[3]
 - Over 20 000 packages on CRAN^[1]
- Most users are from non-computer-science domains
- Several problems in practice^[2, 4]

^[4] Wonsil et al., "Reproducibility as a Service" (2023, Software: Practice and Experience)

^[3] https://pypl.github.io/ [archived]

^[2] Trisovic et al., "A Large-Scale Study on Research Code Quality and Execution" (2022, Nature Publishing Group)

- R is mainly designed for statistical computing^[1]
 - Heavily used in research (e.g., social science)^[2]
 - Ranks 6th on PYPL^[3]
 - Over 20 000 packages on CRAN^[1]
- Most users are from non-computer-science domains
- Several problems in practice^[2, 4]
 - Replication

[1] https://cran.r-project.org/

^[4] Wonsil et al., "Reproducibility as a Service" (2023, Software: Practice and Experience)

^[2] Trisovic et al., "A Large-Scale Study on Research Code Quality and Execution" (2022, Nature Publishing Group)

- R is mainly designed for statistical computing^[1]
 - Heavily used in research (e.g., social science)^[2]
 - Ranks 6th on PYPL^[3]
 - Over 20 000 packages on CRAN^[1]
- Most users are from non-computer-science domains
- Several problems in practice^[2, 4]
 - Replication
 - Program comprehension

^[4] Wonsil et al., "Reproducibility as a Service" (2023, Software: Practice and Experience)

^[3] https://pypl.github.io/ [archived]

^[2] Trisovic et al., "A Large-Scale Study on Research Code Quality and Execution" (2022, Nature Publishing Group)

- R is mainly designed for statistical computing^[1]
 - Heavily used in research (e.g., social science)^[2]
 - Ranks 6th on PYPL^[3]
 - Over 20 000 packages on CRAN^[1]
- Most users are from non-computer-science domains
- Several problems in practice^[2, 4]
 - Replication
 - Program comprehension
 - Missing tool support

[1] https://cran.r-project.org/

^[4] Wonsil et al., "Reproducibility as a Service" (2023, Software: Practice and Experience)

^[2] Trisovic et al., "A Large-Scale Study on Research Code Quality and Execution" (2022, Nature Publishing Group)

- R is mainly designed for statistical computing^[1]
 - Heavily used in research (e.g., social science)[2]
 - Ranks 6th on PYPL^[3]
 - Over 20 000 packages on CRAN^[1]
- · Most users are from non-computer-science domains
- Several problems in practice^[2, 4]
 - Replication
 - Program comprehension
 - Missing tool support
- Demand for software engineering practices^[5]
- [5] Thimbleby, "Improving Science That Uses Code" (2023, Oxford University Press)
- [4] Wonsil et al., "Reproducibility as a Service" (2023, Software: Practice and Experience)
- [3] https://pypl.github.io/ [archived]
- [2] Trisovic et al., "A Large-Scale Study on Research Code Quality and Execution" (2022, Nature Publishing Group)

1] https://cran.r-project.org/

R Scripts

We analyzed 4 083 R-files^[7]

^[7] Sihler et al., "On the Anatomy of Real-World R Code for Static Analysis" (2024, MSR)

R Scripts

We analyzed 4 083 R-files^[7]

[7] Sihler et al., "On the Anatomy of Real-World R Code for Static Analysis" (2024, MSR)
[6] Drudze et al., Apple phenology data set and R script, related to publication "Full flowering phenology of apple tree (Malus domestica) in Pure orchard, Latvia from 1959 to 2019" (2021, Zenodo)

R Scripts

We analyzed 4 083 R-files^[7]

```
# set the data directory and load workspace
setwd("G:/Shared_drives/Fenologija/Raksti/abeles/Zenodo/")
load("Apple Pure phenology R workspace image.RData")
# scirpt to recreate components included in of "Apple_Pure_phenology_R_workspace_image.RData"
# phenology data subset having at least 14 observations owerlaping wiht meteorology data set
   dM ← d %>%
      filter(Year %in% (meteoH$e_obs$Year))
   dM ← dM %>%
      group_by(Variety) %>%
      summarize(N = n()) %>%
      arrange(N) %>%
      filter(N >= 14) %>% # 12 skirnes
      select(-N) %>%
      left join(dM)
# FUNCTION definitions
# phenology model deifned as functino, see Kalvans et al. 2015. DDcos model for details
```

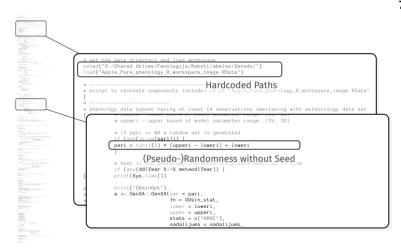
[7] Sihler et al., "On the Anatomy of Real-World R Code for Static Analysis" (2024, MSR)
[6] Drudze et al., Apple phenology data set and R script, related to publication "Full flowering phenology of apple tree (Malus domestica) in Pure orchard, Latvia from 1959 to 2019" (2021, Zenodo)

```
# set the data directory and load workspace
setwd("G:/Shared_drives/Fenologija/Raksti/abeles/Zenodo/")
load("Apple Pure phenology R workspace image.RData")
# scirpt to recreate components included in of "Apple_Pure_phenology_R_workspace_image.RData"
# phenology data subset having at least 14 observations owerlaping wiht meteorology data set
   dM ← d %>%
      filter(Year %in% (meteoH$e_obs$Year))
   dM ← dM %>%
      group_by(Variety) %>%
      summarize(N = n()) %>%
      arrange(N) %>%
      filter(N >= 14) %>% # 12 skirnes
      select(-N) %>%
      left join(dM)
# FUNCTION definitions
# phenology model deifned as functino, see Kalvans et al. 2015. DDcos model for details
```

[6] Drudze et al., Apple phenology data set and R script, related to publication "Full flowering phenology of apple tree (Malus domestica) in Pūre orchard, Latvia from 1959 to 2019" (2021, Zenodo)

```
load("Apple Pure phenology R workspace image.RData")
                                                "Apple_Pure_phenology_R_workspace_image.RData"
# phenology data subset having at least 14 observations owerlaping wiht meteorology data set
   dM ← d %>%
      filter(Year %in% (meteoH$e_obs$Year))
   dM ← dM %>%
      group_by(Variety) %>%
      summarize(N = n()) %>%
      arrange(N) %>%
      filter(N >= 14) %>% # 12 skirnes
      select(-N) %>%
      left join(dM)
# FUNCTION definitions
# phenology model deifned as functino, see Kalvans et al. 2015. DDcos model for details
```

[6] Drudze et al., Apple phenology data set and R script, related to publication "Full flowering phenology of apple tree (Malus domestica) in Pūre orchard, Latvia from 1959 to 2019" (2021, Zenodo)

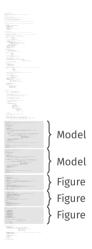

```
load("Apple Pure phenology R workspace image.RData")
                                       Hardcoded Paths
                                               "Apple_Pure_phenology_R_workspace_image.RData"
# phenology data subset having at least 14 observations owerlaping wiht meteorology data set
          # upperi - upper bound of model parameter range (Tb. DD)
          # if pari == NA a random set is generated
          if (any(is.na(pari))) {
          pari = runif(2) * (upperi - loweri) + loweri
          # test if the phenology and meteorology data owerslap in time
          if (any(dd$Year %in% meteod$Year)) {
          print(Sys.time())
          print("DDsinOpt")
          a ← GenSA::GenSA(par = pari.
                            fn = DDsin_stat.
                            lower = loweri.
                            upper = upperi.
                            stats = c("RMSE").
                            sadalijums = sadalijums.
```

[6] Drudze et al., Apple phenology data set and R script, related to publication "Full flowering phenology of apple tree (Malus domestica) in Püre orchard, Latvia from 1959 to 2019" (2021, Zenodo)

```
load("Apple Pure phenology R workspace image.RData")
                                      Hardcoded Paths
                                              "Apple_Pure_phenology_R_workspace_image.RData"
# phenology data subset having at least 14 observations owerlaping wiht meteorology data set
         # upperi - upper bound of model parameter range (Tb. DD)
         # if pari == NA a random set is generated
         if (any(is na(pari))) {
         pari = runif(2) * (upperi - loweri) + loweri
                  (Pseudo-)Randomness without Seed
         if (any(dd$Year %in% meteod$Year)) {
         print(Sys.time())
         print("DDsinOpt")
         a ← GenSA::GenSA(par = pari.
                           fn = DDsin_stat.
                           lower = loweri.
                           upper = upperi.
                           stats = c("RMSE").
                           sadalijums = sadalijums.
```

[6] Drudze et al., Apple phenology data set and R script, related to publication "Full flowering phenology of apple tree (Malus domestica) in Püre orchard, Latvia from 1959 to 2019" (2021, Zenodo)

74 % even fail to complete!^[2]



[2] Trisovic et al., "A Large-Scale Study on Research Code Quality and Execution" (2022, Nature Publishing Group)
[6] Drudze et al., Apple phenology data set and R script, related to publication "Full flowering phenology of apple tree (Malus domestica) in Pure orchard, Latvia from 1959 to 2019" (2021, Zenodo)

[6] Drudze et al., Apple phenology data set and R script, related to publication "Full flowering phenology of apple tree (Malus domestica) in Püre orchard, Latvia from 1959 to 2019" (2021, Zenodo)

[6] Drudze et al., Apple phenology data set and R script, related to publication "Full flowering phenology of apple tree (Malus domestica) in Püre orchard, Latvia from 1959 to 2019" (2021, Zenodo)

· Several analyses in one script

[6] Drudze et al., Apple phenology data set and R script, related to publication "Full flowering phenology of apple tree (Malus domestica) in Pure orchard, Latvia from 1959 to 2019" (2021, Zenodo)

- · Several analyses in one script
- Hard to comprehend

[6] Drudze et al., Apple phenology data set and R script, related to publication "Full flowering phenology of apple tree (Malus domestica) in Püre orchard, Latvia from 1959 to 2019" (2021, Zenodo)

- · Several analyses in one script
- Hard to comprehend
- Hard to extract/re-use parts

[8] Ma et al., Predicting range shifts of pikas (Mammalia, Ochotonidae) in China under scenarios incorporating land-use change, climate change, and dispersal limitations (2021, Zenodo) [L. 135f]

F. Sihler (Ulm University) flowR — Problems 6.

▶ String-based code evaluation

[8] Ma et al., Predicting range shifts of pikas (Mammalia, Ochotonidae) in China under scenarios incorporating land-use change, climate change, and dispersal limitations (2021, Zenodo) [L. 135f]

```
new.env=eval(parse(text = paste("env_",period,"_wc",sep=""))))
  ▶ String-based code evaluation
[9] pull.cat ← function(x) {
      hins \leftarrow 5
      increments \leftarrow (range(x)[2] - range(x)[1])/(bins - 1)
      to_return \leftarrow seg(range(x)[1], range(x)[2], increments)
      return(to_return)
  up.cat ← function(new_bins) {
      up bins = new bins
      body(pull.cat)[[2]] ← substitute(bins ← up bins)
```

[9] Robertson, Social hierarchy reveals thermoregulatory trade- offs in response to repeated stressors (2020, Zenodo) [L. 68ff]
[8] Ma et al., Predicting range shifts of pikas (Mammalia, Ochotonidae) in China under scenarios incorporating land-use change, climate change, and dispersal limitations (2021, Zenodo) [L. 135f]

```
new.env=eval(parse(text = paste("env_",period,"_wc",sep=""))))
▶ String-based code evaluation
   bins \leftarrow 5
   up bins = new bins
   body(pull.cat)[[2]] ← substitute(bins ← up bins)
```

▶ Self-modifying code

[9] Robertson, Social hierarchy reveals thermoregulatory trade- offs in response to repeated stressors (2020, Zenodo) [L. 68ff]
[8] Ma et al., Predicting range shifts of pikas (Mammalia, Ochotonidae) in China under scenarios incorporating land-use change, climate change, and dispersal limitations (2021, Zenodo) [L. 135f]

```
new.env=eval(parse(text = paste("env_",period,"_wc",sep=""))))
▶ String-based code evaluation
   bins \leftarrow up_bins \# (e.g., 6)
   up bins = new bins
   body(pull.cat)[[2]] ← substitute(bins ← up bins)
```

▶ Self-modifying code

[9] Robertson, Social hierarchy reveals thermoregulatory trade- offs in response to repeated stressors (2020, Zenodo) [L. 68ff]
[8] Ma et al., Predicting range shifts of pikas (Mammalia, Ochotonidae) in China under scenarios incorporating land-use change, climate change, and dispersal limitations (2021, Zenodo) [L. 135f]

RStudio IDE posit.co

- RStudio IDE posit.co
 - Syntax-highlighting and auto-completion
 - Refactorings (rename, extract functions and variables)

- RStudio IDE posit.co
 - Syntax-highlighting and auto-completion
 - Refactorings (rename, extract functions and variables)
- R language server github.com/REditorSupport

- RStudio IDE posit.co
 - Syntax-highlighting and auto-completion
 - Refactorings (rename, extract functions and variables)
- R language server github.com/REditorSupport
 - Syntax-highlighting and auto-completion
 - Reference tracing & Refactorings (rename)

- RStudio IDE posit.co
 - Syntax-highlighting and auto-completion
 - Refactorings (rename, extract functions and variables)
- R language server github.com/REditorSupport
 - Syntax-highlighting and auto-completion
 - Reference tracing & Refactorings (rename)
- { lintr} github.com/r-lib/lintr

- RStudio IDE posit.co
 - Syntax-highlighting and auto-completion
 - Refactorings (rename, extract functions and variables)
- R language server github.com/REditorSupport
 - Syntax-highlighting and auto-completion
 - Reference tracing & Refactorings (rename)
- {lintr} github.com/r-lib/lintr
 - Style & syntax errors
 - Potential semantic errors

- RStudio IDE posit.co
 - Syntax-highlighting and auto-completion
 - Refactorings (rename, extract functions and variables)
- R language server github.com/REditorSupport
 - Syntax-highlighting and auto-completion
 - Reference tracing & Refactorings (rename)
- {lintr} github.com/r-lib/lintr

 $\hbox{$ \bullet $ \{ CodeDepends \} $ github.com/duncantl/CodeDepends }$

- Style & syntax errors
- Potential semantic errors

F Sibler (Illm Ilniversity)

Flow P — Problems

- RStudio IDE posit.co
 - Syntax-highlighting and auto-completion
 - Refactorings (rename, extract functions and variables)
- R language server github.com/REditorSupport
 - Syntax-highlighting and auto-completion
 - Reference tracing & Refactorings (rename)
- {lintr} github.com/r-lib/lintr
 - Style & syntax errors
 - Potential semantic errors

- {CodeDepends} github.com/duncantl/CodeDepends
 - Dependency analysis
 - Creation of call-graphs

- RStudio IDE posit.co
 - Syntax-highlighting and auto-completion
 - Refactorings (rename, extract functions and variables)
 Often wrong (simple heuristics)
- R language server github.com/REditorSupport
 - Syntax-highlighting and auto-completion
 - Reference tracing & Refactorings (rename)
- {lintr} github.com/r-lib/lintr
 - Style & syntax errors
 - Potential semantic errors

- {CodeDepends}
 github.com/duncantl/CodeDepends
 - Dependency analysis
 - Creation of call-graphs

- RStudio IDE posit.co
 - Syntax-highlighting and auto-completion
 - Refactorings (rename, extract functions and variables)
 Often wrong (simple heuristics)
- R language server github.com/REditorSupport
 - Syntax-highlighting and auto-completion
 - Reference tracing & Refactorings (rename)
 Often wrong (XPath-Expressions)
- {lintr} github.com/r-lib/lintr
 - Style & syntax errors
 - Potential semantic errors

- - Dependency analysis
 - Creation of call-graphs

- RStudio IDE posit.co
 - Syntax-highlighting and auto-completion
 - Refactorings (rename, extract functions and variables)
 Often wrong (simple heuristics)
- R language server github.com/REditorSupport
 - Syntax-highlighting and auto-completion
 - Reference tracing & Refactorings (rename)
 Often wrong (XPath-Expressions)
- {lintr} github.com/r-lib/lintr
 - Style & syntax errors
 - Potential semantic errors

XPath-Expressions, packages

- { CodeDepends} github.com/duncantl/CodeDepends
 - Dependency analysis
 - Creation of call-graphs

- RStudio IDE posit.co
 - Syntax-highlighting and auto-completion
 - Refactorings (rename, extract functions and variables)
 Often wrong (simple heuristics)
- R language server github.com/REditorSupport
 - Syntax-highlighting and auto-completion
 - Reference tracing & Refactorings (rename)
 Often wrong (XPath-Expressions)
- {lintr} github.com/r-lib/lintr
 - Style & syntax errors
 - Potential semantic errors

XPath-Expressions, packages

- { CodeDepends} github.com/duncantl/CodeDepends
 - Dependency analysis Only top scope
 - Creation of call-graphs

1. fail to replicate

- 1. fail to replicate
- 2. do too much

- 1. fail to replicate
- 2. do too much
- 3. are hard to analyze

- 1. fail to replicate
- 2. do too much
- 3. are hard to analyze
- 4. are not well supported by tools

- 1. fail to replicate
- 2. do too much
- 3. are hard to analyze
- 4. are not well supported by tools

Better Software, Better Research

- 1. fail to replicate
- 2. do too much
- 3. are hard to analyze
- 4. are not well supported by tools

Better Software, Better Research

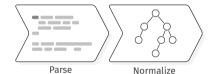
[6] Drudze et al., Apple phenology data set and R script, related to publication "Full flowering phenology of apple tree (Malus domestica) in Pure orchard, Latvia from 1959 to 2019" (2021, Zenodo)

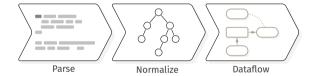
• Interested in a single figure

• Interested in a single figure

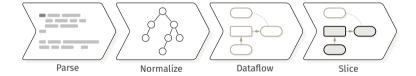
[6] Drudze et al., Apple phenology data set and R script, related to publication "Full flowering phenology of apple tree (Malus domestica) in Pūre orchard, Latvia from 1959 to 2019" (2021, Zenodo)

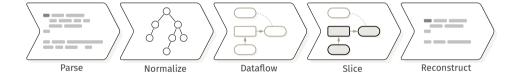
- Interested in a single figure
- ≈ 70 % reduction

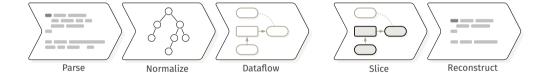

[6] Drudze et al., Apple phenology data set and R script, related to publication "Full flowering phenology of apple tree (Malus domestica) in Pūre orchard, Latvia from 1959 to 2019" (2021, Zenodo)

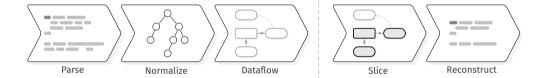


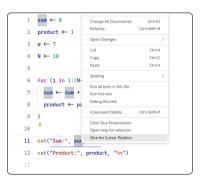
Parse





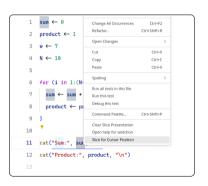






Rudimentary VSCode integration at:

github.com/Code-Inspect/vscode-flowr


Rudimentary VSCode integration at:

github.com/Code-Inspect/vscode-flowr

Rudimentary VSCode integration at:

github.com/Code-Inspect/vscode-flowr


```
1 sum ← 0
2 product ← 1
3 w ← 7
4 N ← 10
5
6 for (1 in 1:(N-1)) {
7  sum ← sum + 1 + w
8  product ← product * 1
9 }
10
11 cat("Sum:", sum, "\n")
12 cat("Product:", product, "\n")
13
```

github.com/Code-Inspect/flowr
github.com/Code-Inspect/vscode-flowr
hub.docker.com/r/eagleoutice/flowr
npmjs.com/package/@eagleoutice/flowr

github.com/Code-Inspect/flowr
github.com/Code-Inspect/vscode-flowr
hub.docker.com/r/eagleoutice/flowr
npmis.com/package/@eagleoutice/flowr

github.com/Code-Inspect/flowr
github.com/Code-Inspect/vscode-flowr
hub.docker.com/r/eagleoutice/flowr
npmis.com/package/@eagleoutice/flowr

```
const s = new SteppingSlicer({
    shell, tokenMap,
    request:
        requestFromInput("x ← 1; x*y"),
    criterion: ['1@x'],
})
const slice =
    await s.allRemainingSteps()
```

github.com/Code-Inspect/flowr
 github.com/Code-Inspect/vscode-flowr
 hub.docker.com/r/eagleoutice/flowr
 npmis.com/package/@eagleoutice/flowr

■ Server

</> Library

```
const s = new SteppingSlicer({
    shell, tokenMap,
    request:
        requestFromInput("x \in 1; x*y"),
        criterion: ['i@x'],
})
const slice =
    await s.allRemainingSteps()
```

>_ REPL

github.com/Code-Inspect/flowr
github.com/Code-Inspect/vscode-flowr
hub.docker.com/r/eagleoutice/flowr
npmis.com/package/@eagleoutice/flowr

```
$\ \\
\{
    "type": "request-file-analysis",
    "id": "4",
    "filetoken": "123",
    "content": "x \in 1; \times x*y"
}

\{
    "type": "request-slice",
    "id": "2",
    "filetoken": "123",
    "criterion": ["10x"]
}
```

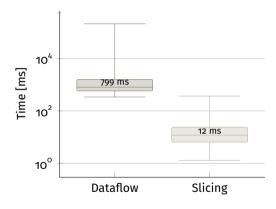
```
const s = new SteppingSlicer({
   shell, tokenMap,
   request:
      requestFromInput("x ← 1; x*y"),
      criterion: ['1@x'],
})
const slice =
   await s.allRemainingSteps()
```

```
>_ REPL

R: parse "x \lefta 1; x*y"
exprlist
H expr
| H expr
| L SYMBOL "x" (1:1)
[...]

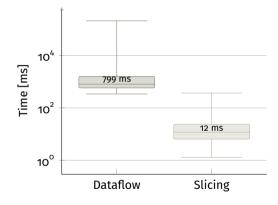
R: dataflow* "x \lefta 1; x * y"
https://mermaid.live/edit#base64:eyJj...
```

docker run -it --rm eagleoutice/flowr

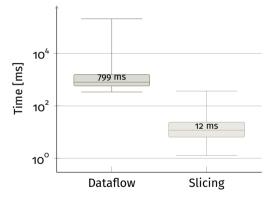

Appendix

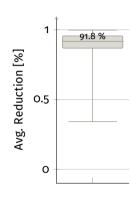
The R Code Static Analysis Landscape

he R Code	Static Aı	nalysis	Landscape	•	:65	ment	anne.	it of	,	eval.	perato	alls duotation	or .or	* dect	°,00	e sco	pe nce herence pointer	onalysis penaltie	s cessor
	goal	method	impl. lang.	oo.3	fun	'all	se cor	it of	n'str	Sciar	dio	alies diotati	on tion	effects static	dyna	the c	ointer	erno pre p	hook th
<pre>[12] {CodeDepends} [13] {codetools} [14] {checkglobals}</pre>	static analysis static analysis missing libs.	AST visitor AST visitor AST visitor	R R R, C		000	0	0	000	000	000	0	00	0	•					0
[15] {rstatic} [16] {CodeAnalysis} [17] {RTypeInference}	static analysis static analysis type inference	AST visitor AST visitor AST visitor	R R		0	00	•	0	000	0	0	0				0	0		
[18] {pkgstats} [19] {globals} [20] {Rclean}	package insight distributed env. debug/refactor	ctags & gtags AST visitor PDG traversal	R, C++ C R		0	0	0	0	00	00	0	0		0					
[21] {lintr} [22] {SimilaR} [23] {rco}	linting plagiarism optimization	XPath, visitor PDG, visitor AST visitor	R R, C++		ŏ	•	0000		ŏ	0	ŏ								
[24] {cyclocomp} [25] {flow} [26] {PaRe}	code complexity visualize, debug code review	AST visitor Regex	R C	5			0		0	0	0	0		•			0		
[27] (dfgraph) [28] (rflowgraph) [29] (languageserver)	static analysis call graph editor support	AST visitor AST visitor XPath, visitor	R, C		0		0			000	0			•					
[30] RStudio [31] ROSA [32] Random	editor support optimization abstract int.	AST visitor visitor trace & visitor	Java, C++, TS,		0	0	0			0	0	0)——			• -)——		
[4] RaaS [33] GNU R	reproducibility execute R	AST visitor bytecode	Python, R C, Fortran, R		0	•	0	00	0	00	Ō	0							
[34] FastR [35] Ř [36] renjin	execute R execute R execute R	AST visitor SSA, bytecode SSA, CFG	R, Java, C,		•	•	:	0	•	00	0	0	0	•	0	•			
[37] pqR [38] MRO [39] RCC	execute R execute R transpile C	bytecode bytecode CFG, bytecode	R, C, Fortran, C/C++, Fortran, R,		0	0	000	0	•	0		0	0	•					


• We generated every possible variable of interest

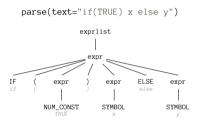
• We generated every possible variable of interest


99th percentile


- We generated every possible variable of interest
- Dataflow results can be cached

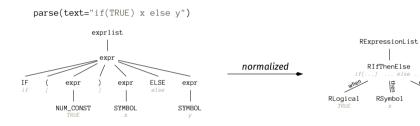
99th percentile

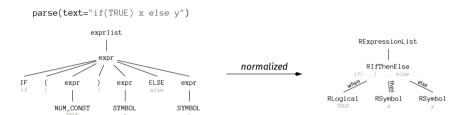
- We generated every possible variable of interest
- Dataflow results can be cached



99th percentile

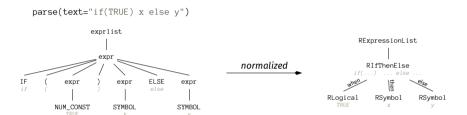
[40] R Core Team, R Language Definition (2023)

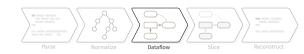



... else ...

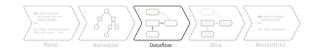
RSymbol

RSymbol

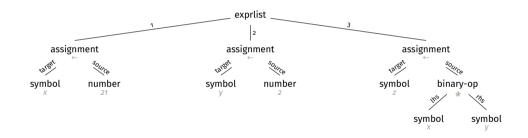




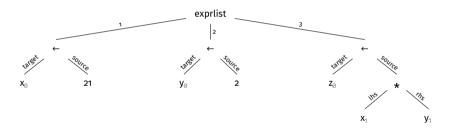
• Normalizing constants, namespacing, operators, ...



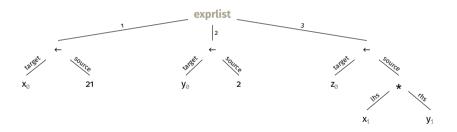
- Normalizing constants, namespacing, operators, ...
- We use the "R language definition" as a basis



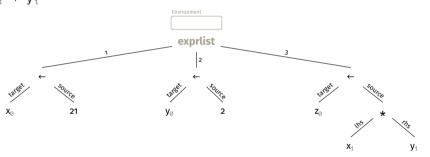
$$\mathbf{x}_{0} \leftarrow 21$$
 $\mathbf{y}_{0} \leftarrow 2$
 $\mathbf{z}_{0} \leftarrow \mathbf{x}_{1} * \mathbf{y}_{1}$



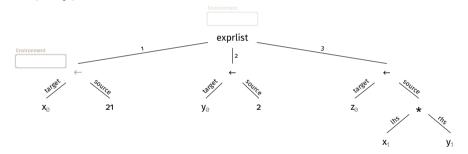

```
\mathbf{x}_{0} \leftarrow 21
\mathbf{y}_{0} \leftarrow 2
\mathbf{z}_{0} \leftarrow \mathbf{x}_{1} * \mathbf{y}_{1}
```

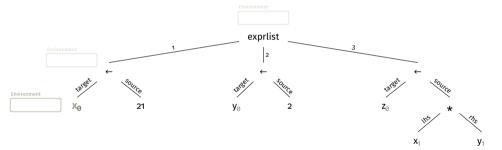
$$\mathbf{x}_{\emptyset} \leftarrow 21$$
 $\mathbf{y}_{\emptyset} \leftarrow 2$
 $\mathbf{z}_{\emptyset} \leftarrow \mathbf{x}_{1} * \mathbf{y}_{\emptyset}$



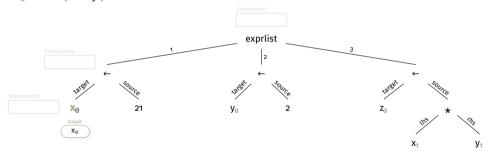
$$\mathbf{x}_0 \leftarrow 21$$
 $\mathbf{y}_0 \leftarrow 2$
 $\mathbf{z}_0 \leftarrow \mathbf{x}_1 * \mathbf{y}_0$



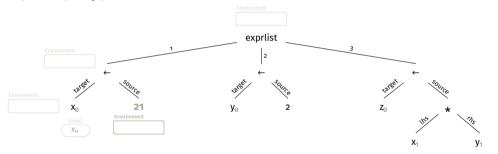
$$\mathbf{x}_{0} \leftarrow 21$$
 $\mathbf{y}_{0} \leftarrow 2$



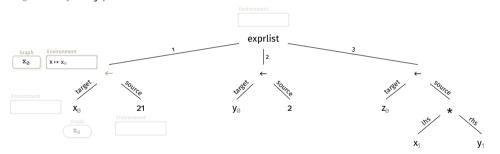

$$\mathbf{x}_{0} \leftarrow 21$$
 $\mathbf{y}_{0} \leftarrow 2$



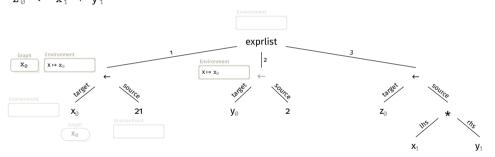

$$\mathbf{x}_{0} \leftarrow 21$$
 $\mathbf{y}_{0} \leftarrow 2$



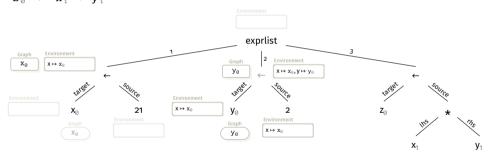
$$\mathbf{x}_{0} \leftarrow 21$$
 $\mathbf{y}_{0} \leftarrow 2$



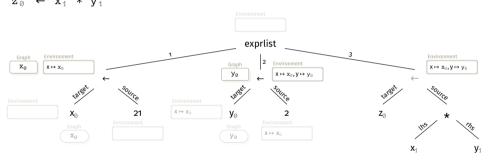
$$\mathbf{x}_{0} \leftarrow 21$$
 $\mathbf{y}_{0} \leftarrow 2$



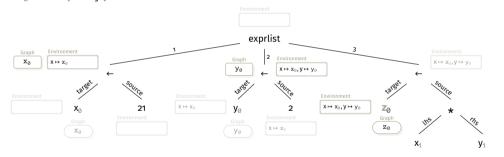
$$\mathbf{x}_{0} \leftarrow 21$$
 $\mathbf{y}_{0} \leftarrow 2$



$$\mathbf{x}_{0} \leftarrow 21$$
 $\mathbf{y}_{0} \leftarrow 2$

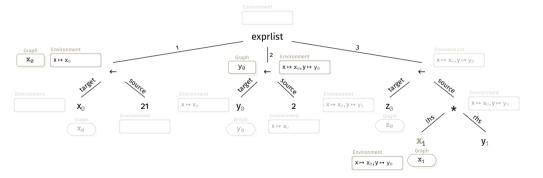


$$\mathbf{x}_{0} \leftarrow 21$$
 $\mathbf{y}_{0} \leftarrow 2$

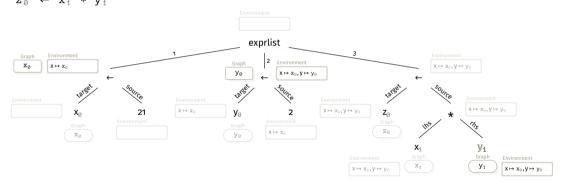


$$\mathbf{x}_{0} \leftarrow 21$$
 $\mathbf{y}_{0} \leftarrow 2$

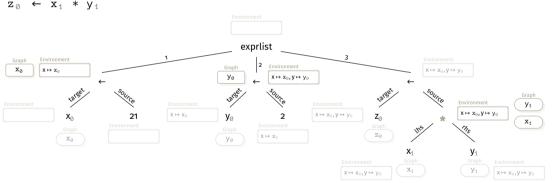
$$\mathbf{x}_{0} \leftarrow 21$$
 $\mathbf{y}_{0} \leftarrow 2$



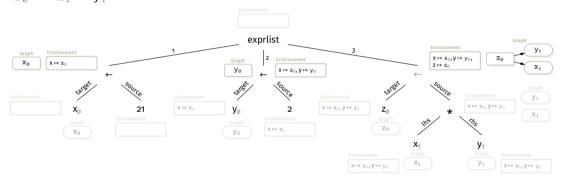
- $\mathbf{x}_{0} \leftarrow 21$ $\mathbf{y}_{0} \leftarrow 2$
- exprlist \mathbf{x}_{o} $x \mapsto x_0$ Уø $x \mapsto x_0, y \mapsto y_0$ $x \mapsto x_0, y \mapsto y_0$ $X \mapsto X_0$ $x \mapsto x_0, y \mapsto y_0$ X_{\emptyset} 21 Z_O z_o $X \mapsto X_0$ x_o Уо X_1 y_1

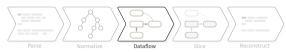


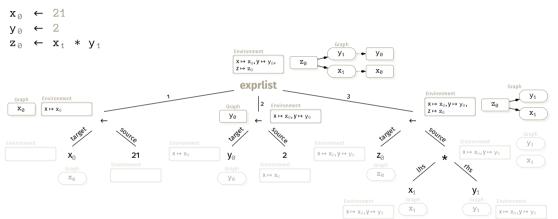
 $\mathbf{x}_{0} \leftarrow 21$ $\mathbf{y}_{0} \leftarrow 2$



 $\mathbf{x}_{\emptyset} \leftarrow 21$ $\mathbf{y}_{\emptyset} \leftarrow 2$








 $\mathbf{x}_0 \leftarrow 21$ $\mathbf{y}_0 \leftarrow 2$

Resulting Dataflow

Resulting Dataflow


```
a ← 3
a ← x * m

if(m > 3) {
a ← 5
}
```

Resulting Dataflow

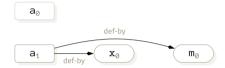

```
\mathbf{a}_{0} \leftarrow \mathbf{3}
\mathbf{a}_{1} \leftarrow \mathbf{x}_{0} * \mathbf{m}_{0}
\mathbf{if}(\mathbf{m}_{1} > \mathbf{3}) \{
\mathbf{a}_{2} \leftarrow \mathbf{5}
\mathbf{b}_{0} \leftarrow \mathbf{a}_{3} + \mathbf{c}_{0}
```

```
Parse Normalize Dataflow Slice Reconstruct
```

a₀

$$\mathbf{a}_{0} \leftarrow \mathbf{3}$$

$$\Rightarrow \mathbf{a}_{1} \leftarrow \mathbf{x}_{0} * \mathbf{m}_{0}$$


$$\mathbf{if}(\mathbf{m}_{1} \Rightarrow \mathbf{3}) \{$$

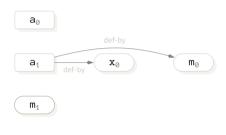
$$\mathbf{a}_{2} \leftarrow \mathbf{5}$$

$$\}$$

$$\mathbf{b}_{0} \leftarrow \mathbf{a}_{3} + \mathbf{c}_{0}$$

$$\mathbf{a}_0 \leftarrow 3$$

$$\mathbf{a}_1 \leftarrow \mathbf{x}_0 * \mathbf{m}$$

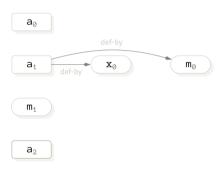

$$\Rightarrow \mathbf{if}(\mathbf{m}_1 \Rightarrow 3) \{$$

$$\mathbf{a}_2 \leftarrow 5$$

$$\}$$

 $b_0 \leftarrow a_3 + c_0$

$$\mathbf{a}_{1} \leftarrow \mathbf{x}_{0} * \mathbf{m}$$


$$\mathbf{if}(\mathbf{m}_{1} > 3) \{$$

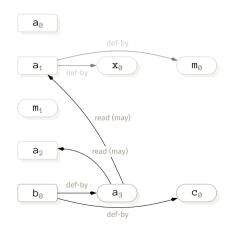
$$\mathbf{a}_{2} \leftarrow 5$$

$$\}$$

 $b_0 \leftarrow a_3 + c_0$

$$\mathbf{a}_{0} \leftarrow \mathbf{3}$$

$$\mathbf{a}_{1} \leftarrow \mathbf{x}_{0} * \mathbf{m}_{0}$$

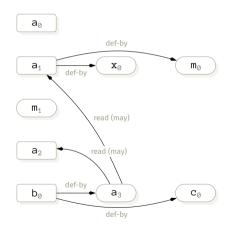

$$\mathbf{if}(\mathbf{m}_{1} > \mathbf{3}) \{$$

$$\mathbf{a}_{2} \leftarrow \mathbf{5}$$

$$\}$$

$$\mathbf{b}_{0} \leftarrow \mathbf{a}_{3} + \mathbf{c}_{0}$$

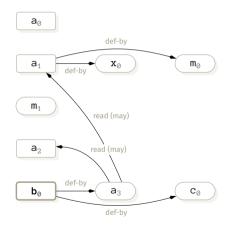
$$a_0 \leftarrow 3$$


$$a_1 \leftarrow \mathbf{x}_0 * \mathbf{m}$$

$$if(\mathbf{m}_1 > 3) \{$$

$$a_2 \leftarrow 5$$

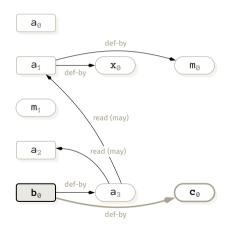
 $b_0 \leftarrow a_3 + c_0$


$$a_0 \leftarrow 3$$

$$a_1 \leftarrow \mathbf{x}_0 * \mathbf{m}_0$$

$$if(\mathbf{m}_1 > 3) \{$$

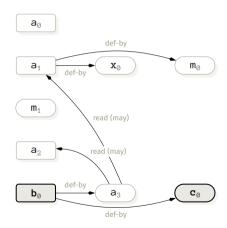
$$a_2 \leftarrow 5$$


$$\mathbf{a}_{0} \leftarrow \mathbf{3}$$

$$\mathbf{a}_{1} \leftarrow \mathbf{x}_{0} * \mathbf{m}_{0}$$

$$\mathbf{if}(\mathbf{m}_{1} > \mathbf{3}) \{$$

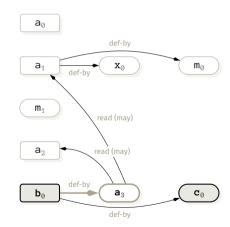
$$\mathbf{a}_{2} \leftarrow \mathbf{5}$$


$$\mathbf{a}_{0} \leftarrow \mathbf{3}$$

$$\mathbf{a}_{1} \leftarrow \mathbf{x}_{0} * \mathbf{m}_{0}$$

$$\mathbf{if}(\mathbf{m}_{1} > \mathbf{3}) \{$$

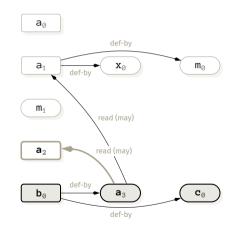
$$\mathbf{a}_{2} \leftarrow \mathbf{5}$$


$$a_0 \leftarrow 3$$

$$a_1 \leftarrow \mathbf{x}_0 * \mathbf{m}_0$$

$$if(\mathbf{m}_1 > 3) \{$$

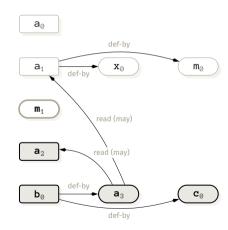
$$a_2 \leftarrow 5$$


$$\mathbf{a}_{0} \leftarrow \mathbf{3}$$

$$\mathbf{a}_{1} \leftarrow \mathbf{x}_{0} * \mathbf{m}_{0}$$

$$\mathbf{if}(\mathbf{m}_{1} > \mathbf{3}) \{$$

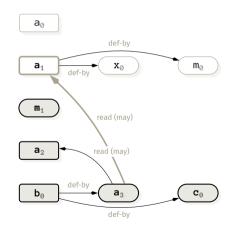
$$\mathbf{a}_{2} \leftarrow \mathbf{5}$$


$$a_0 \leftarrow 3$$

$$a_1 \leftarrow \mathbf{x}_0 * \mathbf{m}_0$$

$$if(\mathbf{m}_1 > 3) \{$$

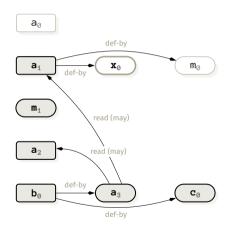
$$a_2 \leftarrow 5$$


$$\mathbf{a}_{0} \leftarrow \mathbf{3}$$

$$\mathbf{a}_{1} \leftarrow \mathbf{x}_{0} * \mathbf{m}_{0}$$

$$\mathbf{if}(\mathbf{m}_{1} > \mathbf{3}) \{$$

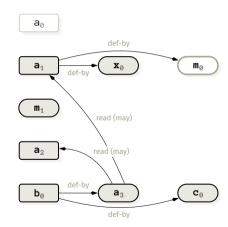
$$\mathbf{a}_{2} \leftarrow \mathbf{5}$$


$$a_0 \leftarrow 3$$

$$a_1 \leftarrow \mathbf{x}_0 * \mathbf{m}_0$$

$$if(\mathbf{m}_1 > 3) \{$$

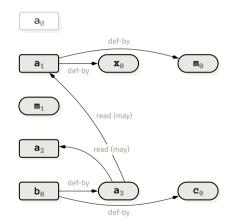
$$a_2 \leftarrow 5$$


$$a_0 \leftarrow 3$$

$$a_1 \leftarrow \mathbf{x}_0 * \mathbf{m}_0$$

$$if(\mathbf{m}_1 > 3) \{$$

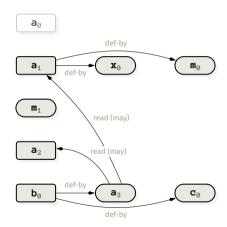
$$a_2 \leftarrow 5$$


$$a_{0} \leftarrow 3$$

$$a_{1} \leftarrow \mathbf{x}_{0} * \mathbf{m}_{0}$$

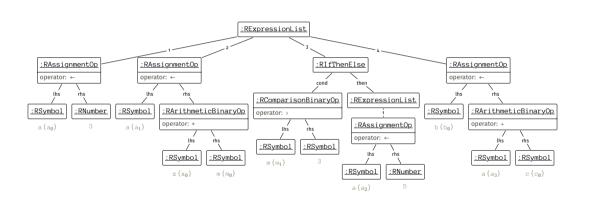
$$if(\mathbf{m}_{1} > 3) \{$$

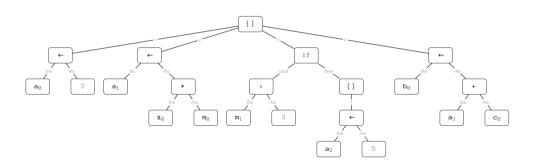
$$a_{2} \leftarrow 5$$

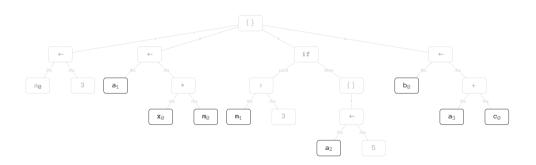

$$\mathbf{a}_{0} \leftarrow \mathbf{3}$$

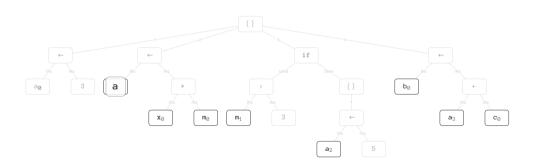
$$\mathbf{a}_{1} \leftarrow \mathbf{x}_{0} * \mathbf{m}_{0}$$

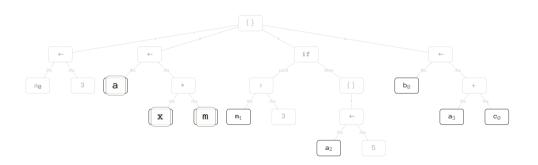
$$\mathbf{if}(\mathbf{m}_{1} > \mathbf{3}) \{$$

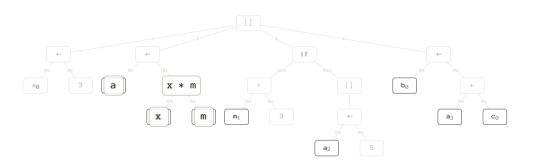

$$\mathbf{a}_{2} \leftarrow \mathbf{5}$$

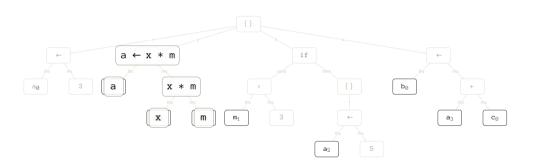


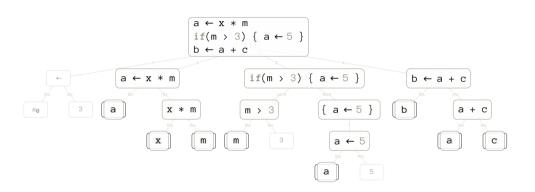


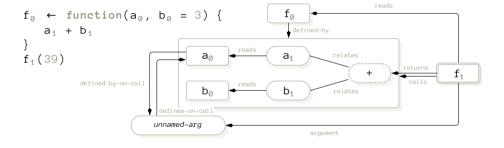












There Is More...

There Is More...

```
f_{\emptyset} \leftarrow function(a_{\emptyset}, b_{\emptyset} = 3) \{
a_1 + b_1
}
f_1(39)
```

There Is More...

Definition-Retrieval

```
paste(
   "(*|descendant-or-self::exprlist/*)[self::FUNCTION or self::OP-LAMBDA]/
       following-sibling::SYMBOL FORMALS[text() = '{token guote}' and @line1 <= {
       row } ] ".
   "(*|descendant-or-self::exprlist/*)[LEFT_ASSIGN[preceding-sibling::expr[count
       (*)=1]/SYMBOL[text() = '{token_quote}' and @line1 <= {row}] and following-
       sibling::expr[@start > {start} or @end < {end}]]]".
   "(*|descendant-or-self::exprlist/*)[RIGHT_ASSIGN[following-sibling::expr[count
       (*)=1]/SYMBOL[text() = '{token quote}' and @line1 <= {row}] and preceding-
       sibling::expr[@start > {start} or @end < {end}]]]".
   "(*|descendant-or-self::exprlist/*)[EO_ASSIGN[preceding-sibling::expr[count(*)=
       1]/SYMBOL[text() = '{token_quote}' and @line1 <= {row}] and following-
       sibling::expr[@start > {start} or @end < {end}]]]",
   "forcond/SYMBOL[text() = '{token quote}' and @line1 <= {row}]".
sep = "|")
```

References I

- [1] The Comprehensive R Archive Network cran.r-project.org. 2024
- [2] Ana Trisovic et al. "A Large-Scale Study on Research Code Quality and Execution". 2022
- [3] PYPL PopularitY of Programming Language index. 2024
- [4] Joseph Wonsil et al. "Reproducibility as a Service". 2023
- [5] Harold Thimbleby. "Improving Science That Uses Code". 2023
- [6] Inese Drudze et al. Apple phenology data set and R script, related to publication "Full flowering phenology of apple tree (Malus domestica) in Pūre orchard, Latvia from 1959 to 2019". June 2021
- [7] Florian Sihler et al. "On the Anatomy of Real-World R Code for Static Analysis". 2024
- [8] Liang Ma et al. Predicting range shifts of pikas (Mammalia, Ochotonidae) in China under scenarios incorporating land-use change, climate change, and dispersal limitations. Aug. 2021
- [9] Joshua Robertson. Social hierarchy reveals thermoregulatory trade- offs in response to repeated stressors. Oct. 2020
- [10] Florian Sihler. "Constructing a static program slicer for R programs". 2023

References II

- [11] Mark Weiser. "Program Slicing". July 1984
- [12] Duncan Lang et al. CodeDepends. Analysis of R Code for Reproducible Research and Code Comprehension. 2018
- [13] Luke Tierney. codetools: Code Analysis Tools for R. 2023
- [14] Joris Chau. checkglobals: Static Analysis of R-Code Dependencies. 2023
- [15] Nick Ulle and Duncan Temple Lang. rstatic: Low-level Static Analysis Tools for R Code. 2019
- [16] Duncan Lang et al. CodeAnalysis. Tools for static analysis of R code. 2023
- [17] Nick Ulle and Duncan Temple Lang. RTypeInference: Infer Types of Inputs and Outputs for R Expressions. 2021
- [18] Mark Padgham. pkgstats. 2021
- [19] Henrik Bengtsson. globals: Identify Global Objects in R Expressions. 2022
- [20] Matthew Lau. Rclean: A Tool for Writing Cleaner, More Transparent Code. 2022
- [21] Jim Hester et al. lintr: A 'Linter' for R Code. 2023
- [22] Maciej Bartoszuk and Marek Gagolewski. SimilaR: R Source Code Similarity Evaluation. 2020

References III

- [23] Juan Cruz Rodriguez. rco: The R Code Optimizer. 2021
- [24] Gabor Csardi. cyclocomp: Cyclomatic Complexity of R Code. 2023
- [25] Antoine Fabri. flow: View and Browse Code Using Flow Diagrams. 2023
- [26] Maarten van Kessel. PaRe: A Way to Perform Code Review or QA on Other Packages. 2023
- [27] Dan Kary. dfgraph: Visualize R Code with Data Flow Graphs.
- [28] Evan Patterson. The algebra and machine representation of statistical models. 2020
- [29] Randy Lai. languageserver: Language Server Protocol. 2023
- [30] Posit team. RStudio: Integrated Development Environment for R. 2023
- [31] Rathijit Sen et al. ROSA: R Optimizations with Static Analysis. 2017
- [32] Gianluca Amato and Francesca Scozzari. "Random: R-Based Analyzer for Numerical Domains".
- [33] R Core Team. R: A Language and Environment for Statistical Computing. 2023
- [34] Tomas Kalibera et al. "A fast abstract syntax tree interpreter for R". 2014
- [35] Olivier Flückiger et al. "Sampling optimized code for type feedback". 2020

References IV

- [36] Alexander Bertram. "Renjin: A new r interpreter built on the jvm". 2013
- [37] Radford M Neal. "Speed Improvements in pqR: Current Status and Future Plans". 2014
- [38] Microsoft R Open Source. 2019
- [39] John Garvin. RCC: A compiler for the R language for statistical computing. 2004
- [40] R Core Team. R Language Definition. 2023