ESM-Tools - A modular approach of an Earth-System-Model infrastructure software

Nadine Wieters, Sebastian Wahl, Miguel Andrés-Martínez, Paul Gierz, Jan Streffing

Helmholtz-Zentrum für Ozeanforschung Kiel

HELMHOLTZ

March 7, 2024

Table of Contents

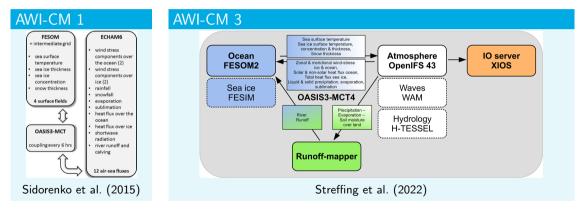
- Motivation 1 2
- ESM-Tools 3
 - Software demands
- Modularity 4

- 5 Software design choices
- 6 Advantages, challenges and lessons learned
- 7 Outlook
- 8 General Information

・ロット (日) (日) (日) (日)

Motivation: Enable a modular and configurable ESM setup

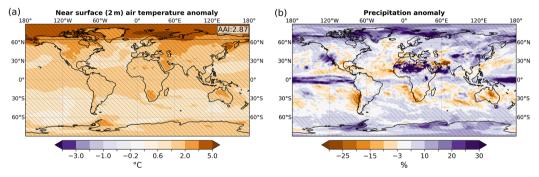
- ESM-Tools (Barbi et al., 2019): A workflow tool to build Earth System Models (ESM) and run climate simulations on different High Performance Computer (HPC)
- Provide an easy-to-use tool for ESM researchers:
 - Climate researchers with or without deep knowledge about programming and/or software engineering practices to have a low level entry in climate simulations
 - Experienced scientists who use different models on different HPCs to make daily work more comfortable
- Modular software
 - improves code development
 - enable extendability
 - enable interoperability
 - enhance maintainability


HEI MHOLTZ

ESM-Tools

©.W

ESM

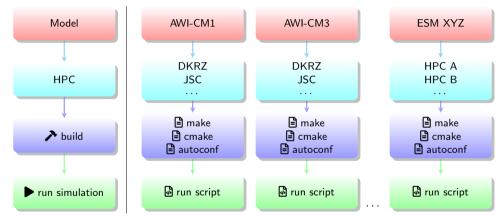

modular workflow and infrastructure software for Earth System Modelling (ESM)

AWI-CM3

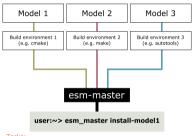
AWI-CM3 temperature (a) and precipitation (b) anomaly (Streffing et al., 2022)

イロト イロト イヨト イヨト ヨー つく()

ESM workflow


From user/researcher perspective

Simulation depends on research subject, field of domain, \rightarrow choose model model code availability, source code, input data, forcing data \rightarrow choose HPC resources HPC software libraries to build model, hardware to run simulation, accounting of CPU hours


ESM infrastructure

ESM-Tools user commands

Tasks:

get-, comp-, update-, clean-, status-, log-, install-, recomp-

Barbi et al. (2019)

esm_master

- download/clone model code
- build model executable(s)

 $esm_master\ install-awicm1$

esm_runscripts

run simulation

esm_runscripts run.yaml -e expid -c -t task

Software demands

- address different models and HPC requirements
- easily expandable in order to include future ESMs and HPCs
- expandability to the functionality of the software should be customizable by the user/researcher of the software
- expand the functionality by not changing the back-end source code

Modularity

- code development
- software usage

11/22

イロト イポト イヨト イヨト 三日

Software design choices

Code development:

- separation of concerns:
 - separate code and configuration: HPC- and model-agnostic Python back-end, YAML configuration files
 - modular configuration files

Software usage:

- enable an extended functionality to the modular and hierarchical configuration files by applying a special configuration file syntax (esm_parser),
- provide an adaptable workflow and plug-in manager that is configurable by the advanced user to extend and add new functionality

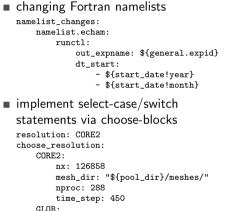
$\mathsf{ESM}\text{-}\mathsf{Tools}$

12 / 22

User edits

overwrites

awicm1.yaml awicm3.yaml Developer <runscript>.yaml HPC.yaml edits fesom.vaml edits <setup>.yaml ESM-Tools \rightarrow back end edits overwrites oifs.yaml <component>.vaml pbs.yaml overwrites oasis3mct.vaml slurm.yaml <machine>.yaml Barbi et al. (2019)

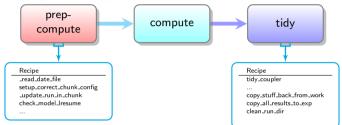


Configuration functionality (esm_parser)

 creating and accessing variables from different sections/config files

ini_restart_dir: "\${general.ini_restart_dir}/fesom/"

- math and calendar operations runtime: \$((\${end date} - \${time step}seconds))
- adding and removing elements from lists and dictionaries list1:
 - element1
 - element2
 - add_list1:
 - element3
 - element4

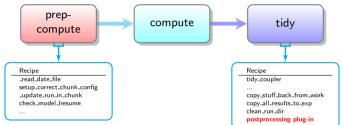

nx: 830305

15 / 22

イロト イポト イヨト イヨト 三日

Workflow and plug-in manager

- workflow phases are python modules
- workflow phase steps are defined as recipes in workflow configuration
- add new functionality as plug-in into a recipe: source code python function, python function in other repository

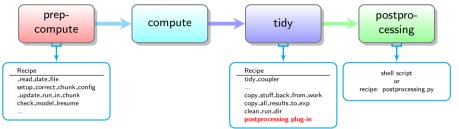


15 / 22

イロト イポト イヨト イヨト 三日

Workflow and plug-in manager

- workflow phases are python modules
- workflow phase steps are defined as recipes in workflow configuration
- add new functionality as plug-in into a recipe: source code python function, python function in other repository



16 / 22

イロト イボト イヨト イヨト 三日

Workflow and plug-in manager

- add new functionality as plug-in into a recipe: source code python function, python function in other repository
- add new workflow phase: shell script, source code python function
- complete recipe is customisable by user

Advantages

- Splitting configuration and code enables a good maintainable code development
- The most important changes in the user PRs are more and more related to the configuration files and sample runscripts (at least of what we know about)
- Very little changes on back-end code
- Less need to update core code except for bugfixes
- Reduces support, since a lot of changes can be done in configuration
- Modular configuration files enable the reusability of configuration across modelling groups, e.g. for model components

Challenges, lessons learned, solutions

- In order to take advantage of the expandability options:
 - the special syntax of configuration files need to be learned by user
 - the implementation of new functions need to be clear and comprehensible to user
- In order to provide a stable functionality of ESM-Tools
 - changes to configuration and workflow needs a good testing strategy

Challenges, lessons learned, solutions

- provide **documentation** and examples of the configuration syntax
- documentation and practical use case examples for workflow manager
- syntax check for configuration files
- establish best practices in applying changes to (default) configurations, e.g. templates
- possible errors demands a good and speaking error messages and good coverage of exception handling and a good availability of logging information
- unit tests for core functionality
- good coverage of integration tests
- establish a well used user forum for help and discussion on issues and problems
- well established user communications on changes (bugfixes, changes to config, mayor releases, ...)

HEI MHOLTZ

Outlook

- enable and transfer the software into an open source community software project
- get a stable core code
- minimal to support and bug fixes

ESM-Tools

General information

- i https://esm-tools.github.io
- https://github.com/esm-tools/esm_tools
- https://esm-tools.readthedocs.io
- **1**0.5281/zenodo.3737927
- Lange to the set of th
- ESMTools: Workshop material
- Monthly online user meeting
- i User support
 - esm-tools-info@listserv.dfn.de
 - Github Issues, Discussions

Nadine Wieters

- 🐱 nadine.wieters@awi.de

HELMHOLTZ

・ロト・西ト・山田・山田・山下

Thank you for your attention!

・ロト 4日ト 4日ト 4日ト 4日ト 900

References I

- Barbi, D., Wieters, N., Cristini, L., and Gierz, P. (2019). Esm-tools: A common infrastructure for modular coupled earth system modelling. *GMD*.
- Sidorenko, D., Rackow, T., Jung, T., Semmler, T., Barbi, D., Danilov, S., Dethloff, K., Dorn, W., Fieg, K., Goessling, H. F., Handorf, D., Harig, S., Hiller, W., Juricke, S., Losch, M., Schröter, J., Sein, D. V., and Wang, Q. (2015). Towards multi-resolution global climate modeling with echam6–fesom. part i: model formulation and mean climate. *Climate Dynamics*, 44(3):757–780.
- Streffing, J., Sidorenko, D., Semmler, T., Zampieri, L., Scholz, P., Andrés-Martínez, M., Koldunov, N., Rackow, T., Kjellsson, J., Goessling, H., Athanase, M., Wang, Q., Hegewald, J., Sein, D. V., Mu, L., Fladrich, U., Barbi, D., Gierz, P., Danilov, S., Juricke, S., Lohmann, G., and Jung, T. (2022). Awi-cm3 coupled climate model: description and evaluation experiments for a prototype post-cmip6 model. *Geoscientific Model Development*, 15(16):6399–6427.

