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Continuous Integration @ HZDR and HIFIS

General Purpose Runners
● Docker-machine based runners 

in Openstack
● Different flavors (#CPUs, RAM)

Special Purpose Runners
● Multiple CPU architectures 

(ARM, Power, AMD, Intel)
● GPUs (NVIDIA, AMD)

HPC Runner in Alpha state
● Test software stacks directly on 

the HZDR HPC system
● E.g. for runtime tests or 

continuous performance 
analysis

Different Operating Systems
● Apple Silicon based MacOS-

Runner
● Windows runner ready for early 

adpoters

Helmholtz
Codebase

-
CI Infrastrucure
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Showcase: Alpaka

• Header-only C++17 abstraction library for accelerator development.

• Its aim is to provide performance portability across accelerators through the 
abstraction (not hiding!) of the underlying levels of parallelism.

• Write code once and execute it on different processors

https://github.com/alpaka-group/alpaka 

https://github.com/alpaka-group/alpaka
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Showcase: Alpaka

FPGA

GPU

CPU
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Showcase: Alpaka

Example, full test matrix CUDA backend:

• 4 GCC versions, 6 Clang versions

• 10 CUDA SDK versions

• 4 Cmake versions

• 7 Boost versions

Naive approach:
 2800 combinations at 6 minutes per job
 Pipeline run: ~9,5h at 30 jobs in parallel
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Challenge

• Bigger Open Source software projects very often hosted on GitHub

• Free CI resources not always enough due to, e.g.

• Amount of resources

• Special hardware (CPU architectures, GPUs) required

• Reaching free limits

• Required resources are locally available, but not usable on GitHub by default

How to combine GitHub with locally available GitLab CI resources?
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Idea

• GitLab provides an integration to allow for using GitLab CI in a GitHub project

• Limitations

• Feature available in the Premium Edition only → cannot use our own instance

• Did not work for Pull Requests from forks

• How to proceed?

Use gitlab.com and make use of group runners

Requires registration in the GitLab for Open Source program

Use GitLab - GitHub CI Integration



…

Uses CI@HIFIS



10 Name der Präsentation



11

How does it work?

github.com/alpaka-group/alpaka gitlab.com/hzdr/crp/alpaka

GitLab native project mirroring

Local branches only
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How does it work?

github.com/alpaka-group/alpaka gitlab.com/hzdr/crp/alpaka

GitLab native project mirroring

Local branches only

Fork 1 – e.g. github.com/tobiashuste/alpaka
Fork 2
…
Fork n

Local branch 1 – (tobiashuste-alpaka-feature-1)
Local branch 2
…
Local branch n

Mirroring Bot for Pull Requests from forks

Notified via webhook

Sends pipeline status back – Identification via Commit Hash
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Strategies to Optimize the CI Pipeline

Goals

• Reduce total CI runtime

• Good test coverage

• Maintainability, extensibility, verifiability

Restrictions and Competitions

• Shared runners

• Special runner resources more limited

• Person hours

Job Generator

Use a job generator to implement algorithms for 

dynamic job configuration

Uses Dynamic Child Pipelines

https://docs.gitlab.com/ee/ci/pipelines/downstream_pipelines.html#dynamic-child-pipelines
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Strategies to Optimize the CI Pipeline

• Algorithm to create a test matrix depending on the test parameters

• Example: Host compiler, device compiler, boost version, …

• Each combination of two parameter values appears at least in one job

• Generator is able to forbid combinations

• Alpaka-related combination rules defined in Python library - 

https://github.com/alpaka-group/alpaka-job-matrix-library 

• Use Python library allpairspy - https://pypi.org/project/allpairspy/ 

• In practice: Number of jobs increases logarithmic depending on number of job parameters

Pairwise Testing

https://github.com/alpaka-group/alpaka-job-matrix-library
https://pypi.org/project/allpairspy/
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Strategies to Optimize the CI Pipeline
Pre-Built Containers

• Provide container images containing all 

dependencies

• Fast download vs. slow compiling

• Caching of image layers possible

• Can easily be used on local development 

systems as well

https://codebase.helmholtz.cloud/crp/alpaka-group-container 

Now hosted on the Helmholtz Codebase container registry

• Same data center as runners

• No hard storage limitations

https://codebase.helmholtz.cloud/crp/alpaka-group-container
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Strategies to Optimize the CI Pipeline

Problem

• Running all jobs in same stage utilize all resources

• If a job finished instantly a new job starts

 →  no other PR of the same or project can execute 

CI jobs

• If one job fails, all other running jobs still try to 

finish

 →  wasting CI resources

Wave Scheduling

Solution

• Distribute jobs on waves (stages)

• Release CI resources constantly and start to 

allocate new resources, if the new stage is starting

• Reorder jobs

• Try to fail in the first wave, if there is a bug in 

the code
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Strategies to Optimize the CI Pipeline
Job filter

• During development only run a reasonable subset of the CI pipeline

• Example: no need to run the full pipeline during development if I know I implement a specific CUDA feature

• Implemented via git commit message
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Summary

• Alpaka developer team happy with the solution

• Allows them to implement more advanced CI pipeline

• Still, the setup is quite complex

• A lot of effort put into automation

 Manual testing would be more time consuming and more error-prone

 More resources, especially GPUs in Openstack will help a lot (stay tuned)



23

Further Reading

• HIFIS – https://hifis.net 

• Ansible Roles: https://github.com/hifis-net 

• Helmholtz Research Software Directory: https://helmholtz.software

• Helmholtz Codebase: https://codebase.helmholtz.cloud

• Alpaka group: https://github.com/alpaka-group    

https://hifis.net/
https://github.com/hifis-net
https://helmholtz.software/
https://codebase.helmholtz.cloud/
https://github.com/alpaka-group
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