
Continuous Integration in Complex Research Software –
Handling Complexity

deRSE24 – Conference for Research Software Engineering

Tobias Huste, Christian Hüser, Norman Ziegner, Simeon Ehrig, Rene Widera

Helmholtz-Zentrum Dresden – Rossendorf

Zentralabteilung Informationsdienste und Computing · Computational Science · Tobias Huste· t.huste@hzdr.de · www.hzdr.de

3

Continuous Integration @ HZDR and HIFIS

General Purpose Runners
● Docker-machine based runners

in Openstack
● Different flavors (#CPUs, RAM)

Special Purpose Runners
● Multiple CPU architectures

(ARM, Power, AMD, Intel)
● GPUs (NVIDIA, AMD)

HPC Runner in Alpha state
● Test software stacks directly on

the HZDR HPC system
● E.g. for runtime tests or

continuous performance
analysis

Different Operating Systems
● Apple Silicon based MacOS-

Runner
● Windows runner ready for early

adpoters

Helmholtz
Codebase

-
CI Infrastrucure

4

Showcase: Alpaka

• Header-only C++17 abstraction library for accelerator development.

• Its aim is to provide performance portability across accelerators through the
abstraction (not hiding!) of the underlying levels of parallelism.

• Write code once and execute it on different processors

https://github.com/alpaka-group/alpaka

https://github.com/alpaka-group/alpaka

5

Showcase: Alpaka

FPGA

GPU

CPU

6

Showcase: Alpaka

Example, full test matrix CUDA backend:

• 4 GCC versions, 6 Clang versions

• 10 CUDA SDK versions

• 4 Cmake versions

• 7 Boost versions

Naive approach:
 2800 combinations at 6 minutes per job
 Pipeline run: ~9,5h at 30 jobs in parallel

7

Challenge

• Bigger Open Source software projects very often hosted on GitHub

• Free CI resources not always enough due to, e.g.

• Amount of resources

• Special hardware (CPU architectures, GPUs) required

• Reaching free limits

• Required resources are locally available, but not usable on GitHub by default

How to combine GitHub with locally available GitLab CI resources?

8

Idea

• GitLab provides an integration to allow for using GitLab CI in a GitHub project

• Limitations

• Feature available in the Premium Edition only → cannot use our own instance

• Did not work for Pull Requests from forks

• How to proceed?

Use gitlab.com and make use of group runners

Requires registration in the GitLab for Open Source program

Use GitLab - GitHub CI Integration

…

Uses CI@HIFIS

10 Name der Präsentation

11

How does it work?

github.com/alpaka-group/alpaka gitlab.com/hzdr/crp/alpaka

GitLab native project mirroring

Local branches only

12

How does it work?

github.com/alpaka-group/alpaka gitlab.com/hzdr/crp/alpaka

GitLab native project mirroring

Local branches only

Fork 1 – e.g. github.com/tobiashuste/alpaka
Fork 2
…
Fork n

13

How does it work?

github.com/alpaka-group/alpaka gitlab.com/hzdr/crp/alpaka

GitLab native project mirroring

Local branches only

Fork 1 – e.g. github.com/tobiashuste/alpaka
Fork 2
…
Fork n

Local branch 1 – (tobiashuste-alpaka-feature-1)
Local branch 2
…
Local branch n

14

How does it work?

github.com/alpaka-group/alpaka gitlab.com/hzdr/crp/alpaka

GitLab native project mirroring

Local branches only

Fork 1 – e.g. github.com/tobiashuste/alpaka
Fork 2
…
Fork n

Local branch 1 – (tobiashuste-alpaka-feature-1)
Local branch 2
…
Local branch n

Mirroring Bot for Pull Requests from forks

Notified via webhook

15

How does it work?

github.com/alpaka-group/alpaka gitlab.com/hzdr/crp/alpaka

GitLab native project mirroring

Local branches only

Fork 1 – e.g. github.com/tobiashuste/alpaka
Fork 2
…
Fork n

Local branch 1 – (tobiashuste-alpaka-feature-1)
Local branch 2
…
Local branch n

Mirroring Bot for Pull Requests from forks

Notified via webhook

Sends pipeline status back – Identification via Commit Hash

16

Strategies to Optimize the CI Pipeline

Goals

• Reduce total CI runtime

• Good test coverage

• Maintainability, extensibility, verifiability

Restrictions and Competitions

• Shared runners

• Special runner resources more limited

• Person hours

Job Generator

Use a job generator to implement algorithms for

dynamic job configuration

Uses Dynamic Child Pipelines

https://docs.gitlab.com/ee/ci/pipelines/downstream_pipelines.html#dynamic-child-pipelines

17

Strategies to Optimize the CI Pipeline

• Algorithm to create a test matrix depending on the test parameters

• Example: Host compiler, device compiler, boost version, …

• Each combination of two parameter values appears at least in one job

• Generator is able to forbid combinations

• Alpaka-related combination rules defined in Python library -

https://github.com/alpaka-group/alpaka-job-matrix-library

• Use Python library allpairspy - https://pypi.org/project/allpairspy/

• In practice: Number of jobs increases logarithmic depending on number of job parameters

Pairwise Testing

https://github.com/alpaka-group/alpaka-job-matrix-library
https://pypi.org/project/allpairspy/

18

Strategies to Optimize the CI Pipeline
Pre-Built Containers

• Provide container images containing all

dependencies

• Fast download vs. slow compiling

• Caching of image layers possible

• Can easily be used on local development

systems as well

https://codebase.helmholtz.cloud/crp/alpaka-group-container

Now hosted on the Helmholtz Codebase container registry

• Same data center as runners

• No hard storage limitations

https://codebase.helmholtz.cloud/crp/alpaka-group-container

19

Strategies to Optimize the CI Pipeline

Problem

• Running all jobs in same stage utilize all resources

• If a job finished instantly a new job starts

 → no other PR of the same or project can execute

CI jobs

• If one job fails, all other running jobs still try to

finish

 → wasting CI resources

Wave Scheduling

Solution

• Distribute jobs on waves (stages)

• Release CI resources constantly and start to

allocate new resources, if the new stage is starting

• Reorder jobs

• Try to fail in the first wave, if there is a bug in

the code

20 Name der Präsentation

21

Strategies to Optimize the CI Pipeline
Job filter

• During development only run a reasonable subset of the CI pipeline

• Example: no need to run the full pipeline during development if I know I implement a specific CUDA feature

• Implemented via git commit message

22

Summary

• Alpaka developer team happy with the solution

• Allows them to implement more advanced CI pipeline

• Still, the setup is quite complex

• A lot of effort put into automation

 Manual testing would be more time consuming and more error-prone

 More resources, especially GPUs in Openstack will help a lot (stay tuned)

23

Further Reading

• HIFIS – https://hifis.net

• Ansible Roles: https://github.com/hifis-net

• Helmholtz Research Software Directory: https://helmholtz.software

• Helmholtz Codebase: https://codebase.helmholtz.cloud

• Alpaka group: https://github.com/alpaka-group

https://hifis.net/
https://github.com/hifis-net
https://helmholtz.software/
https://codebase.helmholtz.cloud/
https://github.com/alpaka-group

	Continuous Integration in Complex Research Software - Tearing D
	Folie 3
	Showcase: Alpaka
	Showcase: Alpaka (2)
	Showcase: Alpaka (3)
	Challenge
	Idea
	Folie 9
	Folie 10
	How does it work?
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Strategies to Optimize the CI Pipeline
	Strategies to Optimize the CI Pipeline (2)
	Strategies to Optimize the CI Pipeline (3)
	Strategies to Optimize the CI Pipeline (4)
	Folie 20
	Strategies to Optimize the CI Pipeline (5)
	Summary
	Further Reading

