
Ammar Nejati, Mikhail Svechnikov, Joachim Wuttke
Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ), Garching, Germany

Cross-platform deployment of a complex C++ computational software
with GUI and Python API

deRSE2024
March 2024, Julius-Maximilians-Universität Würzburg

BornAgain
open-source cross-platform software to simulate and fit GISAS and reflectometry
BornAgain
Simulate and fit grazing incidence small angle scattering

Performance:
C/C++ (low-level implementation of core)

Scripting interface:
Python (high-level interface) for
Multiple versions of Python

Graphical user interface (GUI):
Qt Framework (C++)

Multiple platforms:
Linux, MacOS, MS-Windows

Multiple packaging/installation methods:
Rootless, GUI-based, headless, self-contained

Possible to build from source

https://bornagainproject.org
Pospelov et al, J Appl Cryst 53 (2020)
https://doi.org/10.1107/S1600576719016789

3

Dependencies and Linking

App

core lib B Framework F

ext lib X

core lib A

ext lib Y

OS Kernel

● Intricate chain of dependencies

Computational libraries, GUI libraries and plug-ins (Qt),
inter-operation with interpreters (Python)

● Static vs. dynamic linking

— static linking:

Combining various pieces of code (object files) and data into the
final executable

— dynamic linking:

Linking the final executable to “shared” libraries to be loaded into
memory at runtime

● “Infinite tree”
● “Dependency hell”
● “More is different”

plugins

4

Dynamic Linking on Different Platforms

● Linux

* Shared libraries (ELF format, .so)

* Dynamic linker: ld.so

* Versioning based on distinct file names or symbolic links; e.g. libA.so.1.0.2

* Libraries located based on predefined search paths (see man ld.so)

 — Directories specified in DT_RPATH (applied to searches for all children in the dependency tree)

 — Environment variable LD_LIBRARY_PATH

 — Directories specified in the DT_RUNPATH (does not apply to the children in dependency tree)

 — Cache file /etc/ld.so.cache (see man ldconfig)

 — Default paths /lib and /usr/lib

5

Dynamic Linking on Different Platforms

● Linux

> readelf -d bornagain

Dynamic section at offset 0x16cd8 contains 34 entries:
 Tag Type Name/Value
 0x0000000000000001 (NEEDED) Shared library: [_libBornAgainGUI.so]
 0x0000000000000001 (NEEDED) Shared library: [libboost_program_options.so.1.0]
 0x0000000000000001 (NEEDED) Shared library: [libQt6Core.so.6]
 0x0000000000000001 (NEEDED) Shared library: [libstdc++.so.6]
 0x0000000000000001 (NEEDED) Shared library: [libgcc_s.so.1]
 0x0000000000000001 (NEEDED) Shared library: [libc.so.6]
 0x000000000000000f (RPATH) Library rpath: [$ORIGIN:$ORIGIN/../lib]

bin

lib

bornagain

_libBornAgainGUI.so
libQt6Core.so.6

6

Dynamic Linking on Different Platforms

● MacOS

* Shared libraries (Mach-O format, .dylib or .so)

* Dynamic linker: dyld.so

* Versioning based on distinct file names or symbolic links and “install names”; e.g. libA.so.1.0.2;

 employs install_name_tool

— Libraries located via their full path (not file name); e.g. /usr/lib/libA.dylib (see man dyld.so)

— Relative paths use 3 path prefixes, e.g. @prefix/../lib/libA.dylib

 1. @executable_path/: directory of the main executable for the process

 2. @loader_path/: directory of the binary containing the load command

 3. @rpath/: substituted with each path in the runpath list until a dylib is found;

 run-paths are stored in LC_RPATH attributes of the dependency chain leading to the current library

— List of paths in DYLD_LIBRARY_PATH and DYLD_FRAMEWORK_PATH

7

Dynamic Linking on Different Platforms

● MacOS

MacOS

Library

bornagain

libgsl.25.dylib

Frameworks

PlugIns

libcerf.2.dylib

Qt
QtGui.framework

QtGui

App Contents
> otool -l MacOS/bornagain

MacOS/bornagain:
Load command 18
 cmd LC_LOAD_DYLIB
 name @rpath/libcerf.2.dylib
 current version 2.0.0
compatibility version 2.0.0
Load command 21
 cmd LC_LOAD_DYLIB
 name @rpath/_libBornAgainSample.so
Load command 45
 cmd LC_RPATH
 path @loader_path/../Library
Load command 46
 cmd LC_RPATH
 path @loader_path/../Frameworks/

8

Dynamic Linking on Different Platforms

● Windows

* Shared libraries (.dll extension) and import libraries (.lib file) with PE format

* DLL Loader (LoadLibrary in the Windows API)

* Versioning system based on a manifest file (XML) embedded within the library DLL

* Libraries are located based on predefined search paths

 (see https://learn.microsoft.com/en-us/windows/win32/dlls/dynamic-link-library-search-order)

 — Folder from which the application loaded

— System folders, %SystemRoot%\system32\System32 or %SystemRoot%\SysWow64

— Current folder

— Directories listed in the PATH environment variable

9

Dynamic Linking on Different Platforms

● Windows

bin
bornagain.exe

shared

$PLUGINSDIR

> DUMPBIN /DEPENDENTS bornagain.exe

Dump of file bornagain.exe

File Type: EXECUTABLE IMAGE
 Image has the following dependencies:
 _libBornAgainBase.pyd
 boost_program_options-vc142-mt-x64-1_77.dll
 Qt6Core.dll
 MSVCP140.dll
 VCRUNTIME140.dll
 VCRUNTIME140_1.dll
 api-ms-win-crt-runtime-l1-1-0.dll
 api-ms-win-crt-math-l1-1-0.dll
 api-ms-win-crt-utility-l1-1-0.dll
 KERNEL32.dll

Qt6Core.dll
_libBornAgainGUI.pyd
MSVCP140.dll

10

Generating a High-Level Python Interface

● SWIG (Simplified Wrapper and Interface Generator)

Automatically generates Python wrapper code for C/C++ libraries, based on parsing C/C++
header files

The generated code, along with the original C/C++ code, is compiled to create shared library
which can be imported in Python

● pybind11 or nanobind

● Cython + Python setuptools

Superset of Python that allows Python-like code with C-like performance

The compiled Cython code generates CPython extension modules

● F2PY

NumPy tool that automatically generates Python interfaces for Fortran 77 or 95 code

libA.h
libA.i

libA_wrap.cpp
libA_wrap.h

libA.py

SWIG

11

Wheel: Python Binary Package

● Wheel (PEP 427)

* A ZIP-archive with a specific file name:

 {distribution}-{version}(-{build tag})?-{python tag}-{abi tag}-{platform
tag}.whl

* Can be installed via standard package installers (like pip) or
 simply unpacking into site-packages with via ‘unzip’ tool

* Created via respective pip command

* Platform Wheel: depends on the Python Standard Library and
 additional platform-specific dependencies

src
bornagain

lib

setup.py

pyproject.toml

__init__.py

_libA.so
libA.py
__init__.py

setup.cfg

12

Support for Multiple Versions of Python

● PyEnv <https://github.com/pyenv/pyenv>

Python version management tool that enables users to manage multiple Python
versions and environments on the same system

● Conda

* Anaconda <https://www.anaconda.com>

 Comprehensive Python distribution with multiple versions of Python plus a
 collection of pre-installed packages

 Provides the conda package manager for managing environments and dependencies

* Miniconda <https://docs.anaconda.com/free/miniconda>

 Lightweight version of Anaconda with fewer pre-installed packages

●

13

Different Installers for Each Platform

● Linux

Standard packages (.deb, .rpm extension)

Self-extracting installer (.sh extension)

● MacOS

Disk images (.dmg extension)

● Windows

Windows installer produced by NSIS or Qt Installer Framework (.exe extension)

 ∴ Rootless, GUI-based, headless and self-contained installers for all platforms

14

A View of BornAgain Build System

GitLab + CMake

Core

GUI

PyCore

FFTW
GSL
...

Qt

Python

Documentation

Py
th
on
 A
PI
 L
ay
er

Tests

Packaging

C++

Hugo

SWIG C++, Python CMake, Shell, Python

Installers,
Python Wheels

https://bornagainproject.org
Pospelov et al, J Appl Cryst 53 (2020)
https://doi.org/10.1107/S1600576719016789

Linux, Mac, Windows
Python 3.8–3.11

Thanks for your attention

QUE
STI
ONS

?

