Cross-platform deployment of a complex C++ computational software
with GUI and Python API

Ammar Nejati, Mikhail Svechnikov, Joachim Wuttke
Jiilich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ), Garching, Germany

deRSE2024
March 2024, Julius-Maximilians-Universitat Wiirzburg

=Sy NMLZ

Jiilich Centre for Neutron Science : : .
Heinz Maier-Leibnitz Zentrum

A) JOLICH

FORSCHUNGSZENTRUM

BornAgain

open-source cross-platform software to simulate and fit GISAS and reflectometry

Performance:
C/C++ (low-level implementation of core)

Scripting interface:
Python (high-level interface) for
Multiple versions of Python

Graphical user interface (GUI):
Qt Framework (C++)

Multiple platforms:
Linux, MacOS, MS-Windows

Multiple packaging/installation methods:
Rootless, GUI-based, headless, self-contained

Possible to build from source

Pospelov et al, J Appl Cryst 53 (2020)
https://doi.org/10.1107/S1600576719016789

Dependencies and Linking

* Intricate chain of dependencies App

Computational libraries, GUI libraries and plug-ins (Qt),

inter-operation with interpreters (Python) v v v
 Static vs. dynamic linking ‘ core lib A ’ *{ core lib B ’ Framework F ’

— static linking: L‘ L

Combining various pieces of code (object files) and data into the =

A 4 A 4

final executable
— dynamic linking: [ext lib X }4— ‘ ext lib Y }4 plugins

Linking the final executable to “shared” libraries to be loaded into

memory at runtime
< |

e “Infinite tree” 0S Kernel

* “Dependency hell” o o

 “More is different” @ @

Dynamic Linking on Different Platforms

* Linux

* Shared libraries (ELF format, . so)

* Dynamic linker: 1d. so

* Versioning based on distinct file names or symbolic links; e.g. 1ibA.so0.1.0.2

* Libraries located based on predefined search paths (see man 1d.so)
— Directories specified in DT_RPATH (applied to searches for all children in the dependency tree)
— Environment variable LD_LIBRARY_ PATH
— Directories specified in the DT_RUNPATH (does not apply to the children in dependency tree)
— Cache file /etc/1d.so.cache (see man ldconfig)

— Default paths /1ib and /usr/1ib

—

Dynamic Linking on Different Platforms

e Linux

> readelf -d bornagain

Dynamic section at offset 0x16cd8 contains 34 entries:

Tag Type
0x0000000000000001
0x0000000000000001
0x0000000000000001
0x0000000000000001
0x0000000000000001
0x0000000000000001
0x000000000000000£

(NEEDED)
(NEEDED)
(NEEDED)
(NEEDED)
(NEEDED)
(NEEDED)
(RPATH)

Shared
Shared
Shared
Shared
Shared
Shared
Library rpath:

(0]

— bin
L —bornagain

. Name/Valljle ' . 1ib
library: [_libBornAgainGUI.so] _1ibBornAgainGUI.so
library: [libboost_program_options.so.1.0] .
library: [1ibQt6Core.so.6] — 1ibQt6Core.s0.6
library: [libstdc++.s0.6]
library: [libgcc_s.so.1]
library: [libc.so.6]

[$0RIGIN:$0RIGIN/../1ib]

Dynamic Linking on Different Platforms

* MacOS
* Shared libraries (Mach-O format, .dylib or .so)

* Dynamic linker: dyld.so
* Versioning based on distinct file names or symbolic links and “install names”; e.g. 1ibA.so0.1.0.2;
employs install_name_tool
— Libraries located via their full path (not file name); e.g. /usr/1ib/1ibA.dylib (see man dyld.so)
— Relative paths use 3 path prefixes, e.g. @prefix/../1ib/1ibA.dylib
1. @executable_path/: directory of the main executable for the process
2. @loader_path/: directory of the binary containing the load command
3. @rpath/: substituted with each path in the runpath list until a dylib is found;
run-paths are stored in LC_RPATH attributes of the dependency chain leading to the current library

— List of paths in DYLD_LIBRARY_PATH and DYLD_FRAMEWORK_PATH

—

Dynamic Linking on Different Platforms

e MacOS

> otool -1 MacO0S/bornagain

Mac0S/bornagain:
Load command 18
cmd LC_LOAD_DYLIB
name Q@rpath/libcerf.2.dylib
current version 2.0.0
compatibility version 2.0.0
Load command 21
cmd LC_LOAD_DYLIB
name Qrpath/_libBornAgainSample.so
Load command 45
cmd LC_RPATH
path @loader_path/../Library
Load command 46
cmd LC_RPATH

App Contents
o

— Mac0S
L —bornagain

— Library
— libcerf.2.dylib
—1ibgsl.25.dylib

—— Frameworks

L_qt
L QtGui.framework
L QtGui

— PlugIns

path @loader_path/../Frameworks/ n

Dynamic Linking on Different Platforms

* Windows
* Shared libraries (.d11 extension) and import libraries (.11ib file) with PE format
“ DLL Loader (LoadLibrary in the Windows API)

* Versioning system based on a manifest file (XML) embedded within the library DLL
* Libraries are located based on predefined search paths
(see https://learn.microsoft.com/en-us/windows/win32/d11ls/dynamic-link-library-search-order)
— Folder from which the application loaded
— System folders, %SystemRoot%\system32\System32 Or %SystemRoot%\SysWou64

— Current folder

— Directories listed in the PATH environment variable

—

Dynamic Linking on Different Platforms

* Windows

(o]
> DUMPBIN /DEPENDENTS bornagain.exe
— bin
Dump of file bornagain.exe — bornagain.exe
—(Qt6Core.dll

File Type: EXECUTABLE IMAGE - _1ibBornAgainGUI . pyd

Image has the following dependencies:
_libBornAgainBase.pyd ——MSVCP140.d11
boost_program_options-vcl42-mt-x64-1_77.d11
Qt6Core.dll

MSVCP140.d11 —— shared
VCRUNTIME140.d11
VCRUNTIME140_1.d11 - $PLUGINSDIR

api-ms-win-crt-runtime-11-1-0.d11
api-ms-win-crt-math-11-1-0.411
api-ms-win-crt-utility-11-1-0.4d11
KERNEL32.d11

—

Generating a High-Level Python Interface

SWIG (Simplified Wrapper and Interface Generator)

Automatically generates Python wrapper code for C/C++ libraries, based on parsing C/C++
header files

The generated code, along with the original C/C++ code, is compiled to create shared library
which can be imported in Python

pybind11 or nanobind

Cython + Python setuptools
Superset of Python that allows Python-like code with C-like performance
The compiled Cython code generates CPython extension modules

F2PY

NumPy tool that automatically generates Python interfaces for Fortran 77 or 95 code

libA.h
1ibA.1i

SWIG

\J
1ibA_wrap.cpp
1ibA_wrap.h
1ibA.py

Wheel: Python Binary Package

* Wheel (PEP 427)

* . . el g Lsetup.py
A ZIP-archive with a specific file name: setup. cig
{distribution}-{version}(-{build tag})?-{python tag}-{abi tagl}-{platform —__pyproject.toml
tag}.whl | src
% : : : : . —bornagain
Can be installed via standard package installers (like pip) or
. - __init__.
simply unpacking into site-packages with via ‘unzip’ tool ;;nl ---PY
—1i
* i i - init__.
Created via respective pip command | __1nit__.py
—1ibA.py
— 1ibA.so

* Platform Wheel: depends on the Python Standard Library and
additional platform-specific dependencies

ﬁ

Support for Multiple Versions of Python

* PyEnv <https://github.com/pyenv/pyenv>

Python version management tool that enables users to manage multiple Python
versions and environments on the same system

e Conda
* Anaconda <https://www.anaconda.com>

Comprehensive Python distribution with multiple versions of Python plus a
collection of pre-installed packages

Provides the conda package manager for managing environments and dependencies

* Miniconda <https://docs.anaconda.com/free/miniconda>

Lightweight version of Anaconda with fewer pre-installed packages

Different Installers for Each Platform

* Linux
Standard packages (.deb, .rpm extension)
Self-extracting installer (. sh extension)

* MacOS
Disk images (. dmg extension)

* Windows

Windows installer produced by NSIS or Qt Installer Framework (. exe extension)

.. Rootless, GUI-based, headless and self-contained installers for all platforms

ﬂ

A View of BornAgain Build System

GitLab + CMake

FFTW
GSL

C++ SWIG C++, Python CMake, Shell, Python

'4{ Core % Packaging
— Installers,
Qt (—E GUI |:> E |:> :> Python Wheels
- g Linux, Mac, Windows
e <8 PyCore R SO
[Documentation} https://bornagainproject.org

Pospelov et al, J Appl Cryst 53 (2020)

Hugo https://doi.org/10.1107/S1600576719016789

Thanks for your attention
oo

QU]

E]

Sju

0

=
O N]
B

S]

