
The SPARQLing Unicorn
A Research Tool for Linked Open Data in QGIS
and git-action-based ontology documentation

deRSE24 - Conference for RSEng in Germany
JMU Würzburg | 05. - 07. March 2024

Session: Metadata for Research Software

Timo Homburg & Florian Thiery 



Introduction: Research Data
● At the end of many research projects stands the publication of research:

○ Research papers
○ Data publications
○ Software publications

● The publication of research data comes with many questions:
○ Which data formats?
○ Accessibility of data?
○ Long term storage and hosting?
○ Long term data provision using APIs?
○ Which metadata?
○ FAIR data?
○ Where to publish data?
○ How to generate views on data?

● How can we make research data long term usable with the least possible maintenance?



For the linking of data and FAIRification,
the Linked Open Data (LOD) is the method of choice.

Florian Thiery, CC BY 4.0,
via Wikimedia Commons

Florian Thiery, CC BY 4.0,
via Wikimedia Commons



Publishing Research Data as LOD



Introduction: Research Data as LOD
● Research projects typically 

yield a variety of different 
research data as their results

● Data come in different formats 
and fulfil different functions

● Research data points to further 
research data

● To capture these relations, 
people tend to publish research 
data as linked open data

↑ Ogham in 3D Project, DIAS,
CC BY-NC-SA 3.0 Ireland



In order to create FAIR, reproducible and understandable data
for re-use, LOD must be documented and Published.

Dr. Heidi Seibold, CC BY 4.0, via 10.5281/zenodo.8070860



PubliSHING Linked Open Data
● When publishing Linked Open Data, we have several expectations:

○ 5-star principles of Linked Open Data
○ FAIR publication
○ Open license
○ Reusing common vocabularies
○ Long term storage of the dataset, e.g. with a DOI

● Publish vocabularies independently of data
● Different ways to publish Linked Open Data:

○ Data Dumps 
○ Linked Data Fragments
○ SPARQL Endpoint

● Assumptions for this talk:
○ No server resources exist after the research project is over
○ The research institute cannot provide long term hosting
○ The National Data Infrastructure is

■ Not in place
■ Not suitable for hosting the data
■ Not willing to accept the data



Linked Data Dumps
● Longterm hosting
● Sustainable
● Not easily discoverable by many research communities
● Experts knowledge is required to 
● Linked Data Dumps are not necessarily Linked Open 

Usable Data
● How can we improve this situation?

Motivation:

● Create Linked Open Usable Data (LOUD) Dumps
● What can we achieve in hosting data alone?
● How can we improve Linked Data Dump publications to 

be more user-friendly?



SPARQL Unicorn Ontology 
Documentation Tool



Documentation Tool
● An extension of the SPARQLing 

Unicorn QGIS Plugin
● Idea: Convert an RDF Dump to 

an enriched HTML Deployment
● The result should be ready to 

host on platforms such as 
Github and Gitlab Pages

● The Documentation Process 
should be usable as Continuous 
Integration components

● The Deployment should be in 
such a way that it is useful for a 
maximum of research 
communities



Documentation Tool:How to Use it
1. Load an RDF Data Dump File
2. Select one or more data namespaces which 

should be documented as HTML
3. Select a target folder and customize your 

export
4. Start HTML Generation to a local folder
5. Optional Deployment to a webspace



Documentation Tool:HTML+RDFa Rendering
● Idea: Create static web pages that 

mimic already established Linked 
Open Data Browsers

● Generate a Protegé-inspired class 
tree for navigation

● Create statistics of the dataset and 
publish them using VOID files

● Detect a variety of common 
vocabularies to create customized 
page widgets and pages:
○ 3D Model Viewer
○ Leaflet View for Geometries
○ Dictionary View for 

Ontolex-Lemon dictionaries

Example: ARS-LOD Data 

https://situx.github.io/ars-lod/


Documentation Tool:SPARQLing Data Dumps in JS
● Static Deployments 

cannot provide SPARQL 
endpoints

● Data Dumps can be 
queried in-browser using 
JavaScript

● Data Dumps can be 
queried by external tools 
loading the Linked Data 
Dump File

Example

https://situx.github.io/ars-lod/feat_001419cf-07a6-4b55-96f2-7149eecdb36f/index.html


Documentation Tool:Data Exports
● Different research communities are used to data being provided differently
● The SPARQL Unicorn Ontology Documentation Tool may create data exports for the following communities:

○ Different RDF serializations (.TTL, .JSON-LD, .N3)
○ Graph Analysis Data (.graphml, .gexf among others)
○ GeoExports (GeoJSON, KML, GML)
○ Relational Data Exports (.CSV, .TSV, .JSON)



Datadump Metadata - VOID(ExT)
● Machine-readable discovery of the dataset

○ Automatically generated topics from vocabulary usage 
(e.g. GeoSPARQL: dbp:geodata)

○ Automatically derived topics from vocabulary statements
○ Statistics about the dataset (how many triples, subjects, 

predicates, objects etc.)
○ Which vocabularies are used?
○ Connections to other datastores

Example

https://situx.github.io/ars-lod/ars_dataset/index.html


Datadump Metadata - ClassTree (Vocabulary)
● Human-readable Discovery

○ Classtree navigation 
○ Additional generation of Collection 

instances for better navigation
○ Data Schema Views on Class Items 
○ Views on the position of classified 

items in the graph
○ Classtree is captured as its own 

vocabulary 
(https://purl.org/vocab/classtree)

https://purl.org/vocab/classtree


Static APIs
● “A collection of flat (JSON?) files that live on a webspace”
● Static APIs may be used to mimic existing APIs with a sacrifice of features that real APIs provide
● We can use static APIs to provide data in RDF Dumps to research communities in ways they are used to
● Do other (research-)communities provide static API definition that are useful?

○ Do they have to?
○ Can we adopt supposedly non-static APIs and publish them statically?

Which APIs, in their static form, provide enough functionality to be useful?



Static APIs: Example QGIS and OGC API Features
SPPHarbour Dataset:

● A dataset of 
medieval 
Harbours in 
Europe

● GeoData 
modeled with 
the 
GeoSPARQL 
vocabulary

● Static 
Deployment as 
a Github Page

https://archaeolink.github.io/SPP1630Harbours-RDF/


Static APIs: Example QGIS and OGC API Features
In QGIS:

● Add static 
deployment as OGC 
API Features 
service

● Classes in RDF 
graph become 
FeatureCollection 
defintions in QGIS

● Only full 
FeatureCollections 
can be loaded

● No serverside 
filtering/searching



Static APIs: Example IIIF
● Expose Image data 

hosted on Zenodo 
using a static IIIF 
Deployment

● Use the JS Viewer 
Mirador (deployed 
with the HTML 
Dump) or any other 
IIIF View to access 
the data

● Only image loading 
is supported

● Image resizing, 
rotating etc. would 
require a server

Example

https://situx.github.io/ars-lod/iiif/


Static APIs: Example CKAN
● Expose generated data export 

formats via the well-known CKAN 
API

● Datasets become accessible for a 
variety of CKAN clients without 
losing their linked open data 
context

● Searching via CKAN does not work
● Listing all CKAN datasets works

Example 
https://archaeolink.github.io/CIGS_RDF/a
pi/3/

https://archaeolink.github.io/CIGS_RDF/api/3/


SPARQL Unicorn Ontology Documentation in RDM
● SPARQL Unicorn Ontology Documentation helps with:

○ Publishing Research Data
○ Archiving Research Data

● SPARQL Unicorn Ontology Documentation enables:
○ Research Data Discovery
○ Research Data Reuse

● SPARQL Unicorn Ontology Documentation simplifies:
○ Research Data Analysis
○ Research Data Processing

Image by https://tu-dresden.de/ 

https://tu-dresden.de/


Conclusions
● Research projects producing linked open data are often constrained to 

publishing LOD Dumps
● Discoverability of RDF Dumps by different communities can be 

enhanced by 
○ Providing HTML Renderings
○ Additional data exports
○ Data access via static APIs

● We believe that easily generated access to LOUD Dumps can be a way to 
enhance the exposure and reuse of research data



Future Work
● Publishing RDF Dump Contents as Public Solid Pods
● Detection and visualization of further vocabulary contents
● Integration of further common (static) APIs
● HTML Templating



Finis!

Questions?


