PostWRF: Visualization of the WRF and ERA5 data

Amir H. Nikfal

PostWRF software: Visualization of WRF model

GCM

PostWRF software: Data format

Purpose of the software

Scientific papers in meteorology

Most frequently used visualizations Contour plot

Most frequently used visualizations Cross-section plot

Most frequently used visualizations Met diagrams

Running PostWRF is simple

RunningRunningPostWRFWRF

Atmospheric Cells.

Atmospheric Dynamics

Aaryan's

Atmospheric Cells.

Atmospheric Dynamics Physics/micro-physics

Atmospheric Cells.

Atmospheric Dynamics Physics/micro-physics Boundary layer Physics

Atmospheric Cells.

Atmospheric Dynamics Physics/micro-physics Boundary layer Physics Atmospheric Radiation

WRF is run by a namelist

1. Microphysics (mp_physics)

&physics 2. mp physics 2, 0. = 0.progn 1, ra lw physics 1, 2. 1, ra sw physics = 2, 30, 30. radt = 30. 1. 1, sf sfclay physics = 1.sf surface physics = 2. 2, 1, bl pbl physics 1, 1, = 1.

a. Kessler scheme: A warm-rain (i.e. no ice) scheme used commonly in idealized cloud modeling studies ($mp_physics = 1$).

b. Lin et al. scheme: A sophisticated scheme that has ice, snow and graupel processes, suitable for real-data high-resolution simulations (2).

c. WRF Single-Moment 3-class scheme: A simple, efficient scheme with ice and snow processes suitable for mesoscale grid sizes (3).

d. WRF Single-Moment 5-class scheme: A slightly more sophisticated version of (c) that allows for mixed-phase processes and super-cooled water (4).

e. Eta microphysics: The operational microphysics in NCEP models. A simple efficient scheme with diagnostic mixed-phase processes. For fine resolutions (< 5km) use option (5) and for coarse resolutions use option (95).

f. WRF Single-Moment 6-class scheme: A scheme with ice, snow and graupel processes suitable for high-resolution simulations (6).

WRF is run by a namelist

1. Microphysics (mp_physics)

&physics	\frown		
mp_physics	=(4,)	2,	2,
progn	= 0,	0,	
ra_lw_physics	= 1,	1,	1,
ra_sw_physics	= 2,	2,	1,
radt	= 30,	30,	30,
sf_sfclay_physics	= 1,	1,	1,
sf_surface_physics	= 2,	2,	1,
bl_pbl_physics	= 1,	1,	1,

a. Kessler scheme: A warm-rain (i.e. no ice) scheme used commonly in idealized cloud modeling studies ($mp_physics = 1$).

b. Lin et al. scheme: A sophisticated scheme that has ice, snow and graupel processes, suitable for real-data high-resolution simulations (2).

c. WRF Single-Moment 3-class scheme: A simple, efficient scheme with ice and snow processes suitable for mesoscale grid sizes (3).

d. WRF Single-Moment 5-class scheme: A slightly more sophisticated version of (c) that allows for mixed-phase processes and super-cooled water (4).

e. Eta microphysics: The operational microphysics in NCEP models. A simple efficient scheme with diagnostic mixed-phase processes. For fine resolutions (< 5km) use option (5) and for coarse resolutions use option (95).

f. WRF Single-Moment 6-class scheme: A scheme with ice, snow and graupel processes suitable for high-resolution simulations (6).

WRF is run by a namelist

1. Microphysics (mp_physics)

&physics		\frown	
mp_physics	= 4,	2	2,
progn	= 0,	0,	
ra_lw_physics	= 1,	1,	1,
ra_sw_physics	= 2,	2,	1,
radt	= 30,	30,	30,
sf_sfclay_physics	= 1,	1,	1,
sf_surface_physics	= 2,	2,	1,
bl_pbl_physics	= 1,	1,	1,

a. Kessler scheme: A warm-rain (i.e. no ice) scheme used commonly in idealized cloud modeling studies ($mp_physics = 1$).

b. Lin et al. scheme: A sophisticated scheme that has ice, snow and graupel processes, suitable for real-data high-resolution simulations (2).

c. WRF Single-Moment 3-class scheme: A simple, efficient scheme with ice and snow processes suitable for mesoscale grid sizes (3).

d. WRF Single-Moment 5-class scheme: A slightly more sophisticated version of (c) that allows for mixed-phase processes and super-cooled water (4).

e. Eta microphysics: The operational microphysics in NCEP models. A simple efficient scheme with diagnostic mixed-phase processes. For fine resolutions (< 5km) use option (5) and for coarse resolutions use option (95).

f. WRF Single-Moment 6-class scheme: A scheme with ice, snow and graupel processes suitable for high-resolution simulations (6).

namelist

. . .

...

WRF_Extract_ON_OFF = 0Init: 2022-08-08_12:00:00 Valid: 2022-08-09_06:00:00 Temperature (C) at surface Wind Velocity (m s-1) at 500 hPa . . . 2022040115 . . . 10m wind speed • TEMP at 2 M 55N . . . 1.25 CONTOUR_ON_OFF = 0501 1.00 0.75 . . . 0.50 45N 0.25 . . . 0.00 0.25 0.50 0.75 REF 1.25 1.50 . . . 10E Temperature at 700 hpa (K) 26.99 31.08 35.17 39.26 **CROSSSECTION ON-OFF** = 02022-08-09 06:00:00 254.46 258.46 262.46 266.46 Omega Temperature 2023-07-18 17:00:00 . . . 18000 . . . 200 15000 hpa) 400 . . . Height (m) 12000 STATISTICAL DIAGRAMS ON OFF = 0Ð 600 9000 800 1200 0 14 29 43 57 71 86 100 Relative Humidity (%) . . . Omega (Pa/s Domain On-Off = 0175955 -0.0738044 0.0283465 0.130497 chiron (00 E E0 E) 1 0000 07 10 00

16

namelist WRF_Extract_ON_OFF = 0 CONTOUR ON OFF **CROSSSECTION ON-OFF** = 0. STATISTICAL_DIAGRAMS_ON_OFF = 0 Domain On-Off = 0

. . .

CONTOUR_ON_OFF

!!! Variable_1 by line contours !!!1st_Variable_on_off1st_Variable_name1st_Variable_pressure_level1st_Variable_intervals1st_Variable_intervals1st_Variable_line_color1st_Variable_line_thickness1st_Variable_label_size= 0.5

namelist

700 5

!! Variable_2 by (broken) line con	tours !!!
2nd_Variable_on_off	= 0
2nd_Variable_name	= pvo
2nd_Variable_pressure_level	= 700
2nd_Variable_intervals	= 0
2nd_Variable_line_color	= red
2nd_Variable_line_thickness	= 0.5
2nd_Variable_label_size	= 0.4
2nd_Variable_brokenline_on_off	= 1

!!! Variable_3 by shaded contours !!!3rd_Variable_on_off3rd_Variable_name= rh

Temperature (C) at 700 hPa

CONTOUR_ON_OFF

!!! Variable_1 by line contours !!!1st_Variable_on_off1st_Variable_name1st_Variable_pressure_level1st_Variable_intervals1st_Variable_intervals1st_Variable_line_color1st_Variable_line_thickness1st_Variable_label_size= 0.5

namelist

!!! Variable_2 by (broken) line cor	ntours !!!
2nd_Variable_on_off	= 0
2nd_Variable_name	= pvo
2nd_Variable_pressure_level	= 700
2nd_Variable_intervals	= 0
2nd_Variable_line_color	= red
2nd_Variable_line_thickness	= 0.5
2nd_Variable_label_size	= 0.4
2nd_Variable_brokenline_on_off	= 1

!!! Variable_3 by shaded contours !!!3rd_Variable_on_off3rd_Variable_name= rh

CONTOUR_ON_OFF

namelist

!!! Variable_2 by (broken) line con	ntours !!!
2nd_Variable_on_off	= 0
2nd_Variable_name	= pvo
2nd_Variable_pressure_level	= 700
2nd_Variable_intervals	= 0
2nd_Variable_line_color	= red
2nd_Variable_line_thickness	= 0.5
2nd_Variable_label_size	= 0.4
2nd_Variable_brokenline_on_off	= 1

!!! Variable_3 by shaded contours !!!3rd_Variable_on_off3rd_Variable_name= rh

CONTOUR_ON_OFF

namelist

= 1

!!! Variable_3 by shaded contours !!!3rd_Variable_on_off3rd_Variable_name= rh

Temperature (C) at 700 hPa

CONTOUR_ON_OFF

namelist

= 1

!!! Variable_3 by shaded contours !!!3rd_Variable_on_off3rd_Variable_name= rh

CONTOUR_ON_OFF

namelist

= 1

!!! Variable_3 by shaded contours !!!3rd_Variable_on_off= 03rd_Variable_name= rh

namelist PostWRF's run process = 1

CONTOUR_ON_OFF

III Variable 1 by line contours III	
variable_r by fine contours	()
1st_Variable_on_off	<u>1</u>
1st_Variable_name	= tc
1st_Variable_pressure_level	= 700
1st_Variable_intervals	= 5
1st_Variable_line_color	= red
1st_Variable_line_thickness	= 0.5
1st_Variable_label_size	= 0.5

!!! Variable_2 by (broken) line con	tours !!!
2nd_Variable_on_off	= <u> </u>
2nd_Variable_name	= slp
2nd_Variable_pressure_level	= 500
2nd_Variable_intervals	= 5
2nd_Variable_line_color	= green
2nd_Variable_line_thickness	= 0.5
2nd_Variable_label_size	= 0.4
2nd_Variable_brokenline_on_off	= 1
	\bigcirc
!!! Variable_3 by shaded contours	
3rd_Variable_on_off	= 1
3rd Variable name	= rh

. .

.

Relative Humidity (%) at surface Temperature (C) at 700 hPa Sea Level Pressure (hPa) at surface

CONTOUR_ON_OFF

namelist

Relative Humidity (%) at surface Temperature (C) at 700 hPa Sea Level Pressure (hPa) at surface Wind Velocity (m s-1) at 700 hPa

PostWRF: Visualization of WRF model

Fully documented: https://postwrf.readthedocs.io

YouTube training videos

PostWRF: Interactive tools for the visualization of the WRF and ERA5 model

outputs

Amirhossein Nikfal

Atmospheric Science and Meteorological Research Center, Tehran, Iran

ARTICLE INFO

ABSTRACT

Dataset link: https://github.com/anikfal/PostW RF

Keywords: WRF Visualization Data handling ERA5 RTTOV PostWRF is an open-source software toolkit to facilitate the main visualization tasks and data handling for the WRF model outputs. The toolkit is mostly written in NCL and Shell, with a namelist that resembles the WRF or WPS namelists. Besides the visualizations, PostWRF provides WRF-NetCDF to GeoTIFF conversion for GIS applications, ERA5-NetCDF reanalysis data plotting and extraction, and preparation and plotting of the RTTOV model inputs (from WRF) and outputs. The primary purpose of PostWRF is to benefit the environmental researchers (both experienced and inexperienced) to make use of the WRF model simulations,

in a straightforward and efficient way, without dealing with coding and syntax errors. Since the WRF model simulates most aspects of a full atmospheric model in the regional scale, the toolkit can also be used as an educational aid in meteorological and environmental science. PostWRF is freely available on GiHub (https://github.com/anikfal/PostWRF), provided with HTML documentations (https://postwrf.readthedocs.io/ en/master) and guided examples.

anikfal/postwrf

Visualization and postprocessing of the WRF and ERA5 data

ନ୍ୟ 1	⊙ 6	☆ 43	ዮ 11
Contributor	Issues	Stars	Forks