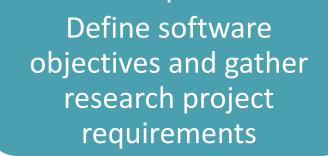


**Friedrich-Alexander-Universität Faculty of Engineering** 

nfdi4

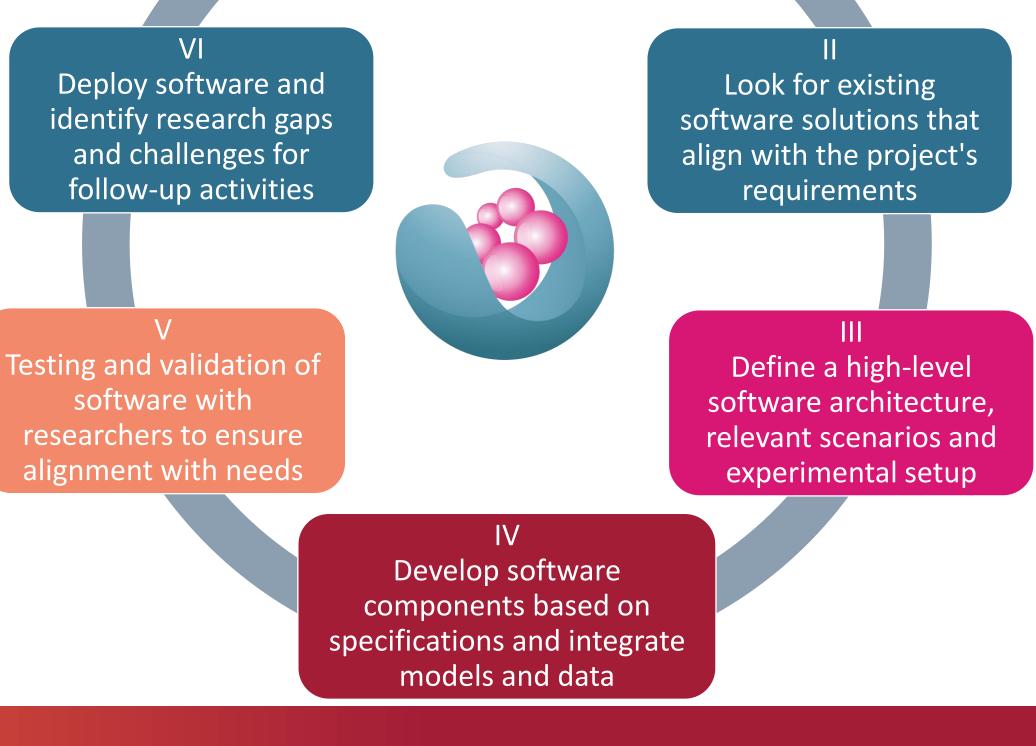
energy

# Research Software Engineering in the Energy Domain as Part of NFDI4Energy


Corinna Seiwerth<sup>1</sup>, Michael Niebisch<sup>1</sup>, Stephan Ferenz<sup>2</sup>, Reinhard German<sup>1</sup>

- <sup>1</sup> Friedrich-Alexander-Universität Erlangen-Nürnberg
- <sup>2</sup> Carl von Ossietzky Universität Oldenburg
- E-Mail: corinna.seiwerth@fau.de

### Motivation


- Usage of self-written software as starting point for research
- Software, like simulation tools, as results from

## Software Life Cycle in Research Project



analysis in this domain

- Addressing the handling of software across the entire research and transfer cycle within the National Research Data Infrastructure for the Interdisciplinary Energy System Research (NFDI4Energy)
- Application of FAIR data principles to data and software
- Providing a Simulation-as-a-Service Platform as better support for the use of simulation in the energy domain and software engineering



#### Main Aspects of Simulation in Interdisciplinary Energy Research in NFDI4Energy

| Improve Findability | Improve Interoperability                           | Improve Reusability                                                |
|---------------------|----------------------------------------------------|--------------------------------------------------------------------|
| Software Registry   | Simulation-as-a-Service                            | <u>Scenario Ontology</u>                                           |
|                     | <ul> <li>Distributed simulation for the</li> </ul> | Integration of semantics and<br>domain knowledge in the process of |

- Links to implementations of simulation techniques
- Test cases and other resources
- Providing guidance services for quick access and suitability finding

Energy Simulation Software Ontology

- Structured overview of different modeling approaches and guide for researchers
- Allowing experts to add details for their specific areas of expertise

combination of existing models and running a comprehensive simulation

Providing easy access to simulation
 middleware that enables different
 types of distributed simulation

**Distributed Simulation Frameworks** 



planning, execution, and evaluation of simulations

 Integrate specialized hardware-inthe-loop (HIL) and laboratory testing in power system simulation scenarios

#### Information Model

Formalizing relationships and properties of simulation models and components

 Including references to external model and component registries and the domain-specific ontology