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Computational algorithms to translate and
interpret from stars to meteorites and Earth
samples and back

1) Translate predictions from stellar yields into
units and representations from laboratory
analysis of meteorites

2) Predict expected variations to be seen in Solar
System materials and stardust grains, including
nucleosynthesis, chemistry, and dust
condensation plus implantation of ionised noble
gases into dust grains

3) Produce, transport and incorporate
radioisotopes in Earth material
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Computational algorithms to translate and
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1) Translate predictions from stellar yields into
units and representations from laboratory
analysis of meteorites

2) Predict expected variations to be seen in Solar

Online database of data from
meteorites and their inclusions
(similar to the presolar grain
database)

System materials and stardust grains, including
nucleosynthesis, chemistry, and dust
condensation plus implantation of ionised noble
gases into dust grains

3) Produce, transport and incorporate
radioisotopes in Earth material

In practice there will be a code
developer, and then all of us will
provide inputs and be users

Generate an online database of
example predictions representing
nuclear astrophysics model predictions
of correlations between stable/stable
and radioactive/stable abundances of
specific isotopes
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Within the spirit of INFRA Integrating Activities for Starting Communities:
This is not the whole job, and we will not have full, final results!
The objective is to start to make the tools and preparing people

Objectives

We aim to offer the first combined [multi-disciplinary training|in both the laboratory analyses of
Solar System materials showing signatures of stellar nucleosynthesis, and the nuclear astrophysics
modelling necessary to interpret such signatures. We will build

i) [a new generation of scientists| who can effectively operate at the interface between
nuclear astrophysics and laboratory sample analysis and can act as future trainers for
researcher groups

ii) [the new tools|(codes, methods, comprehensive approaches) required for communicating
and operating at such interface. We will create and strengthen inter-disciplinary
communities made of individuals with multi-disciplinary experience and communicating
skills, who can disseminate this knowledge to the wider community.




