

Total Absorption Spectroscopy of "Astromers" in ⁷⁰Cu

Eleanor Ronning

19th Russbach School on Nuclear Astrophysics March 8, 2024

This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics and used resources of the Facility for Rare Isotope Beams (FRIB), which is a DOE Office of Science User Facility, under Award Number DE-SC0000661.

What is an "astromer"?

- Isomers: long-lived (~1ns or longer) meta-stable nuclear states
- Astromers: isomers that have some astrophysical relevance

Astromers can impact:

- Nucleosynthesis pathways
- Energy emitted from radioactive decays
- Example: ²⁶Al and ^{26m}Al
 - ²⁶Al (spin: 5⁺, t_{1/2}: 1.06x10⁶ yrs)
 - ^{26m}Al (spin: 0⁺, t_{1/2}: 9.2 s)
 - Because of spin and half-life differences, the ground state and isomer must be treated as different species

Ward and Folwer, ApJ **238** (1980) Fujimoto, et al, MNRAS **493** (2020) Misch, et al. ApJL **913** (2021)

Astromers in nucleosynthesis calculations

Facility for Rare Isotope Beams

U.S. Department of Energy Office of Science Michigan State University

E. K. Ronning, March 8th, 2024 19th Russbach School, Slide 3

Astromers in nucleosynthesis calculations

Facility for Rare Isotope Beams

U.S. Department of Energy Office of Science Michigan State University

⁷⁰Cu has two astromers

 ⁷⁰Cu has two isomers (J^π =1⁺,3⁻) and a J^π =6⁻ ground state

Isomer/Ground State	Half Life (s)
6⁻ (gs)	44.5(2)
3 ⁻ (m1)	33(2)
1+ (m2)	6.6(2)

⁷⁰Cu has two astromers

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

E. K. Ronning, March 8th, 2024 19th Russbach School, Slide 6

Summing Nal(TI) Total Absorption Spectrometer

Summing NaI(TI) (SuN) total absorption spectrometer

- 8 Segments give information about individual γ-rays
- Summing γ-rays from all segments gives information about excitation energies

Simon et al., NIM A 703 (2013): 16-21

Efficiency at 1 MeV—85% Resolution at 1MeV—6%

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

SuN/LEBIT Ion Trap Experiments (SuNLITE)

Experiment took place at the NSCL at MSU

CAD drawing courtesy of C. Snow

Separation of two isomeric and ground states

 Need to separate out 6⁻ ground state γ-rays from 1⁺ and 3⁻ isomeric state γ-rays in ⁷⁰Cu beam

 ⁷⁰Cu beam cycled on/off every 10 minutes

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

State	Percentage
6-	69(4)%
3-	23(4)%
1+	8(7)%
35 34 34 1 33 33 32 31	$\begin{array}{c c} 3 & 6 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 &$
-8 -6	-4 -2 0 2 4 6

Beam

Spin Parity

v_{rf} - 2,055,181.5 [Hz]

Final χ^2 minimization results

Facility for Rare Isotope Beams

U.S. Department of Energy Office of Science Michigan State University

Extraction of β-feeding values

Experimental I_{β} values compare well to theory

- Shell Model with jun45^[a] and jj44b^[b] Hamiltonians
- QRPA+PVC^[c,d]
 - Compared to 1⁺ isomer

[a] Honma, et al. PRC **80** 064323 (2009)
[b] Mukhopadhyay, et al. PRC **95** (2017)
[c] Robin, et al. Eur Phys J A **52** 205 (2016)
[d] Robin, et al. PRC **98** 051301 (2018)

Extraction of average γ -ray energy

Ground/Isomeric State	Average γ-ray energy (MeV)
6-	3.6(2)
3-	3.5(7)
1+	1.5(4)

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

E. K. Ronning, March 8th, 2024 19th Russbach School, Slide 12

Isomers have different overall energy release

The population of these astromers greatly impacts energy release compared to treatment of ⁷⁰Cu as a single species

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

SuN++/LEBIT Ion Trap Experiments (SuNLITE++)

CAD drawing courtesy of C. Snow

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

Summary and Future Prospects

Summary

- Nuclear isomers can play important roles in stellar nucleosynthesis but because of lacking experimental data they are often neglected
- For the first time we identify the 1⁺ and 3⁻ isomers in ⁷⁰Cu as "astromers"
- We measured the β-decay of the 6⁻ ground state and 3⁻ and 1⁺ isomeric states in ⁷⁰Cu to ⁷⁰Zn using SuN and LEBIT and extracted experimental βfeeding values and average γ-ray energy
- ⁷⁰Cu proves to be a good example of how the population of astromers will impact electromagnetic signals from heavy element nucleosynthesis
 - Cumulative affects from many astromers will impact time-dependent γ-spectra and alter observable signals

Future Prospects: We need more experimental data about astromers to begin to understand the role they play in stellar nucleosynthesis

Acknowledgements

This work is supported by the US Department of Energy National Nuclear Security Administration through Grant No. DOE-DE-NA0003906

