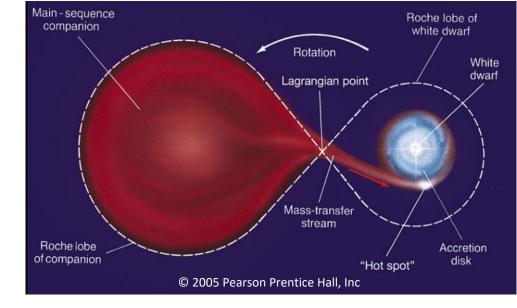


Exploring Calcium Discrepancies in Nova Models

MESA

Mallory Loria University of Victoria/TRIUMF 03/08/24

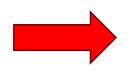

University of Victoria

Falk Herwig, Pavel Denissenkov, Chris Ruiz

CLASSICAL NOVAE ARE...

 Events where a white dwarf (WD) accretes material from a lowmass, main-sequence companion (Chomiuk+ 21)

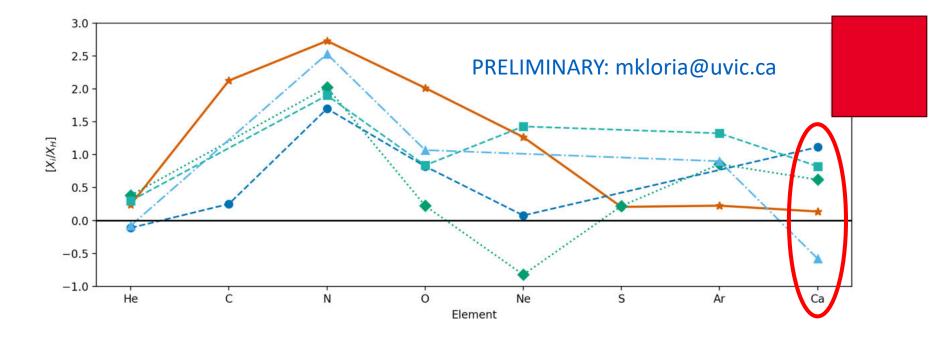
- One of the most common types of explosions in our galaxy (20 70 per year)
- Important to study because they offer insights into explosive nucleosynthesis processes that we can then study in the laboratory (Lovely+ 21)


EXPERIMENTAL NUCLEAR PHYSICS FOR NOVAE

NOVA MODELS FOR HEAVY ELEMENT PRODUCTION

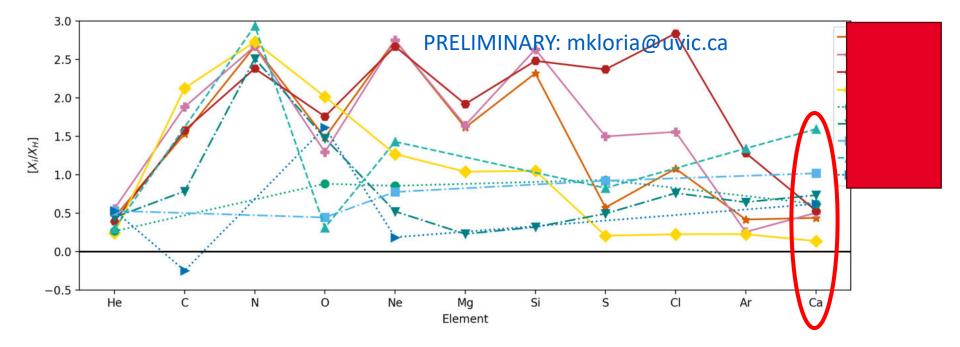
- Performed multi-zone post-processing nucleosynthesis simulations (NuGrid MPPNP) on five Modules for Experiments in Stellar Astrophysics (MESA) nova models
- Gathered abundances from nine observed novae that report Ca abundance

Contact <u>mkloria@uvic.ca</u> for model parameters

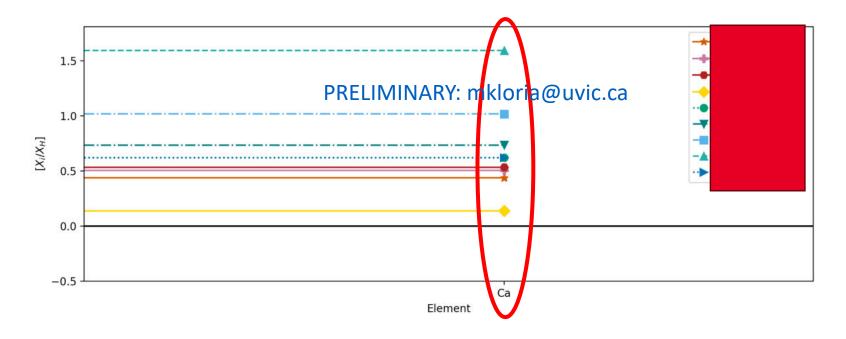


The hotter and more extreme the nova, the greater the production of heavy elements!

Table 1: MESA nova model parameters, similar to Denissenkov+ 14


Ca OVERABUNDANCE IN CO NOVAE

 $[X_i/X_H] = \log_{10}(X_i/X_H)_{nova} - \log_{10}(X_i/X_H)_{\odot}$


Ca OVERABUNDANCE IN CO & ONe NOVAE

 $[X_i/X_H] = \log_{10}(X_i/X_H)_{nova} - \log_{10}(X_i/X_H)_{\odot}$

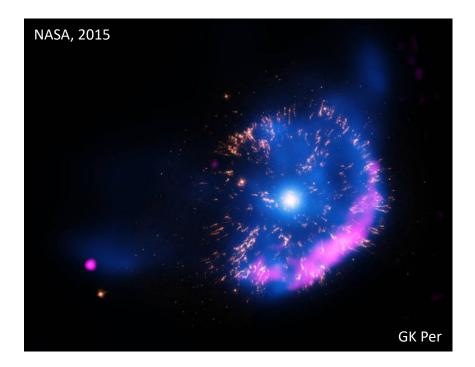
Ca OVERABUNDANCE IN CO & ONe NOVAE

 $[X_i/X_H] = \log_{10}(X_i/X_H)_{nova} - \log_{10}(X_i/X_H)_{\odot}$

WHAT CAUSES THIS DISCREPANCY?

- Could it be the nuclear physics uncertainties in our models?
 - Certain reactions are not well studied thus the uncertainties in their rates are large
- Performed Monte Carlo (MC) simulations of single-zone post-processing (NuGrid PPN) nucleosynthesis that vary nuclear reaction rates by a factor of 10 up and down
 - (p, γ), (p, α), (α, γ), (α, p)
 - 33 Cl to 41 Cl and up to 38 Ti to 46 Ti
- Calculate Pearson correlation coefficients to get the important reactions for element production

	38 Ti 29	³⁹ Ті _{β+}	⁴⁰ Τί _{β+}	⁴¹ Τί _{β+}	⁴² Τί ^β *	⁴³ Τί _{β+}	44 Ti e- capture	⁴⁵ Τί _{β+}	46 Ti Stable
	³⁷ Sc	³⁸ Sc	³⁹ Sc	⁴⁰ Sc _{β+}	⁴¹ Sc _{β+}	⁴² Sc β+	⁴³ Sc _{β+}	⁴⁴ Sc _{β+}	45Sc Stable
	³⁶ Са _{β+}	³⁷ Са _{β+}	³⁸ Са ^{β+}	³⁹ Са _{β+}	⁴⁰ Са 28+	41Ca e- capture	42Ca	⁴³ Ca _{Stable}	44Ca Stable
7	³⁵ Κ ^{β+}	³⁶ Κ ^{β+}	³⁷ Κ _{β+}	³⁸ Κ _{β+}	39K Stable	⁴⁰ К ^{р.}	41K Stable	⁴² К ^{р.}	⁴³ К ^{β-}
	³⁴ Ar ^{β+}	³⁵ Αr _{β+}	³⁶ Аг ^{2β+}	37 Ar e- capture	38Ar Stable	³⁹ Ar	40 Ar Stable	41 Ar _{p-}	⁴² Аг ^{β-}
	³³ СІ _{β+}	³⁴ СІ _{β+}	35CI Stable	³⁶ СІ ^{β-}	37CI Stable	38CI	³⁹ СІ ^{р-}	⁴⁰ СІ ^{β-}	41CI #-
	_	_							•


IMPACT OF VARIED NUCLEAR REACTION RATES ON Ca PRODUCTION

- ³⁹K(p, γ)⁴⁰Ca and ³⁸K(p, γ)³⁹Ca identified as the most correlated to the production of Ca in *all* nova models
- 39 K(p, γ) 40 Ca rate increased by a factor of 13 (Fox+ 24)
- Changed only reaction rate of ${}^{39}K(p, \gamma){}^{40}Ca$ by a factor of 10 for our hottest nova model \rightarrow minimal increase in Ca

NUCLEAR PHYSICS UNCERTAINTIES CANNOT ACCOUNT FOR THIS DISCREPANCY

WHAT ELSE COULD EXPLAIN Ca OVERABUNDANCE?

- Dust fractionation (Schneider & Maiolino 23)
- Evolved stellar companion (Godon & Sion 23)
- Mixing and mass loss mechanisms are still poorly understood (Denissenkov+ 13)

SUMMARY

1) Ca is overabundant in observations of novae compared to our nova models 2) Nuclear physics uncertainties cannot explain these differences