

STUDY OF ION-ION FUSION MECHANISMS AT SUB-BARRIER ENERGIES FOR NUCLEAR ASTROPHYSICS

Alexandra E. Spiridon

National Institute of Physics and Nuclear Engineering

IFIN-HH

Nuclear astrophysics with direct and indirect methods at IFIN-HH

Activities and results of nuclear astrophysics research at IFIN-HH Bucharest-Magurele in the last few years. Mostly from the Nuclear Astrophysics Group (NAG), which continued the two basic types of experimental activities:

Direct measurements at low and very low energies with beams from the local *3 MV tandetron accelerator*.

Competitive for *measurements into the Garnow window* of reactions induced by light ions and alphas.

Extra sensitivity is provided by the *ultra-low background laboratory in a salt mine* and by BEGA.

 Indirect measurements done with beams at international facilities with radioactive beams: TAMU, RIKEN

860A Sputter Source	
¹¹ B ³⁺	>50 еµA
12C ³⁺	>80 еµA
16O ³⁺	>80 еµA
²⁸ Si ³⁺	>70 еµA
³¹ P ³⁺	>70 еµA
⁵⁸ Ni ³⁺	>20 еµA
⁶³ Cu ²⁺	>20 еµA
⁷⁵ As ²⁺	>10 еµA
¹⁹⁷ Au ²⁺	>80 еµA

Direct Measurements

Program-guided - study of ion-ion fusion mechanism below Coulomb barrier aim for ¹²C+¹²C, ¹²C+¹⁶O, etc using reactions between nearby nuclei ¹³C+¹²C for E_{em}=2.2 - 5.6 MeV, Phys Let B 801 (2020), NIM A (2020) 13C+16O et al. - in progress Complementary to indirect studies (e.g. THM ...) 10 collab with Lanzhou, Catania "opportunistic" - cases of NA interest that can 10-4 use the properties of the lab at the salt mine 10-5 $(= \log T_{1/2} > 1-2 \text{ hrs. activities})$ σ [b] $E_0 = 4.4$ $Ni \neq a, Zr \neq a$ 10-6

Motivation

In stellar nucleosynthesis, many of the important reactions involve the capture of very light particles: p, n, a.

- There are also a few crucial reactions between light ions
- heavier than ⁴He, among them those involving ¹²C and ¹⁶O.
- Such reactions occur at very low energies, well below the Coulomb barrier.
 - this makes them difficult to study experimentally
 - understanding the fusion mechanism at such energies becomes very important in order to correctly extrapolate at the low energies of interest

Ion-ion fusion near or below the Coulomb barrier

There are many models with different approaches (and variations...), among them:

Time-dependent Hartree-Fock (TDHF)

no need to worry about which channels one should include because they are all automatically included at the mean field level

Coupled-Channels (CC) - focuses on the influence on nuclear structure on heavy-ion fusion

different variations based on choice of ion-ion potential (WS, M3Y, M3Y-Repulsive, etc...)

Hindrance - first reported in (2002) by Jiang

In medium-heavy mass systems, the fusion reaction

Q-value is always negative

Mathematically, S(E) must have a maximum

$S(E) = E\sigma_{\text{fus}} \exp[2\pi(\eta - \eta_0)] \text{ mb MeV},$

That's not the case for light-light and some light-medium systems, where the fusion Q-value > 0. There is no restriction on S(E) when $E \rightarrow 0$

Other phenomena can have an influence too:

Excitations of surface modes, barrier distrib WorEditwak WPS Offictions, transfer reactions, ...

¹²C +¹²C

Edit with WPS Office

²⁴₁₂Mg₁₂ STABLE

Ultra low background (µBq) laboratory at Slanic Salt Mine

Edit with WPS Office

¹²C +¹²C - Results

¹²C +¹²C - Results

Extend study: approach used

Direct measurements C+C, C+O, O+O extremely difficult or impossible to perform because the cross sections are very small

Activation is most sensitive method, but all reactions lead to stable residuals
Approach: study of nearby ion-ion fusion reaction mechanisms at sub-barrier energies
Worked for ¹²C+¹²C, using ¹³C+¹²C down into Gamow window – avoids resonances
Similarly, study ¹²C +¹⁶O and ¹⁶O +¹⁶O, using reactions involving their neighbors
Fusion mechanism for ¹³C+¹⁶O, ^{12,13}C+¹⁹F, ... using target activation method
Cannot go to salt mine, lifetimes too short, improve bkg reduction at home: BEGA
O targets: use oxides of heavy elements as targets (CeO₂, Ta₂O₅, WO₃)

The ¹²C+¹⁶O Reaction

X. Fang et al, PHYSICAL REVIEW C 96, 045804 (2017)

FIG. 13. The S(E) factor of ${}^{12}C + {}^{16}O$ fusion. In addition to the data of the present work (solid symbols) also previous data (open symbols) from the literature [15–17] are shown. Patterson's data [17] does not include the *n* channel. The dotted line denotes the calculations using the Sao Paulo potential [2,41]. The hindrance model fit [7] with all the data points is presented as the dashed line. An *R*-matrix calculation (solid line) based on the analysis of the proton channel is shown as well.

The ¹³C+¹⁶O Reaction

The ¹³C+¹⁶O Reaction - Activation

In beam irradiation, thick targets (CeO2 disk ~ 1 mm)

 $T_{1/2} = 2.25 \text{ min}$

T_{1/2} =9.5 min

27 AL STABLE

Beam @ 0.2 - 6 pµA and energy @ 7.6 – 15.6 MeV (Lab)

The ¹⁹F+^{12,13}C Reaction

*Collaboration with L. Guardo, R. Sparta et al @ INFN-LNS, through ChETEC-INFRA TNA

In beam irradiation of thick targets followed by deactivation measurements

FUTURE PLANS

Thick target activation method + Salt mine/BEGA can be used to reach the Gamow window

ACKNOWLEDGMENTS AND THANKS

THANK YOU!

