

(α,γ) & (α,n) key reaction studies using (⁷Li,t) alpha-transfer reactions

Faïrouz Hammache Laboratoire de Physique des 2 Infinis Irène Joliot-Curie (IJCLab) fairouz.hammache@ijclab.in2p3.fr

19th Russbach School on Nuclear Astrophysics

March 3rd-9th 2024 (Russbach)

Why studying (α, γ) & (α, n) reactions via α -transfer reactions?

T=0.1-1 GK \rightarrow hundreds keV- MeV << E_C $\rightarrow \sigma(E)$ very weak (0.01 fb- ~100 pb) \rightarrow Direct measurements are very challenging or impossible

In case of stable nuclei:
 Direct measurements of \(\sigma(E)\) at high energies then extrapolation at stellar energies **But:** Problems with extrapolation: resonances at very low energy, sub-threshold resonances

➢ In case of radioactive nuclei:
 Low beam intensities (~10⁵ - 10⁷ p/s)
 → direct measurements challenging

Resonant (α, γ) & (α, n) reaction cross-sections

 $A+\alpha \rightarrow C^* \rightarrow B+\gamma$ or $A+\alpha \rightarrow C^* \rightarrow B+n$

Resonant capture only possible for energies: $E_{cm}=E_R=E_x-Q$

$$\sigma(E) = \pi \lambda^2 \frac{2J_c + 1}{(2J_A + 1)(2J_x + 1)} \frac{\Gamma_x \Gamma_y}{(E - E_R)^2 + \frac{\Gamma_{tot}}{4}} \quad x = \alpha,$$

y=n or γ

$$\langle \sigma v \rangle = \left(\frac{2\pi}{\mu kT}\right)^{\frac{3}{2}} \hbar(\omega \gamma)_R \exp\left(-\frac{E_R}{kT}\right)$$

$$\rightarrow (\omega \gamma)_R = \frac{2J_c + 1}{(2J_A + 1) \cdot (2J_x + 1)} \frac{\Gamma_x \Gamma_y}{\Gamma_{tot}}$$

The resonant reaction rates can be calculated if the resonant parameters (E_R, J_i, Γ_{x,y}) are known
 w
 experiments can be performed to extract these

spectroscopic information

Transfer reactions to evaluate the decay partial widths

Let's assume a compound nucleus C in an excited state E_r which has a pure core-particle configuration $\Psi = |A \oplus \alpha \rangle$

→ For a state with a pure core-particle configuration, $\Gamma_{\alpha}{}^{s.p}$ can be calculated → In most of cases Ψ is a mixture of configurations and we have $\Gamma_{\alpha} = S_{\alpha} \Gamma_{\alpha}{}^{s.p}$ → S_{α} is a measure of the overlap between the initial and final state

 \rightarrow By determining the <u>spectroscopic factor</u> $S_{\alpha} = \langle C^* | A \otimes \alpha \rangle^2$ via transfer reactions, we can calculate Γ_{α} .

Transfer reactions: $X(=\alpha+b)+A \longrightarrow C^*(\alpha+A)+b \longleftrightarrow \alpha+A \longrightarrow C^* \swarrow C^+ \gamma$

• Populate the states of interest in the compound nucleus C* formed by α +A by transferring the particle α from a high-energy projectile X assumed to be composite (X= α +b) (typical E ~ few tens of MeV >> V_{coul}) to the target nucleus A

What do we measure by detecting b?

- By measuring the energy and angle of the emitted particle b
 - \Rightarrow Excitation Level energies of the populated states in C^{*}: $\mathbf{E}_{\mathbf{x}}$ (kinematics calculations)
- Differential cross-sections of each populated state: $d\sigma/d\Omega$

$$\left(\frac{d \sigma}{d \Omega}\right)_{lab}^{exp} = \frac{Yield (\theta_{lab})}{N_p N_T \Delta \Omega}$$

- Yield = Number of **b** particles measured at each θ
- N_p= number of projectile ions
- N_T = number of target atoms/cm², $\Delta\Omega$ = Solid angle

Transfer reactions: $X(=\alpha+b)+A \longrightarrow C^*(\alpha+A)+b \longleftrightarrow \alpha+A \longrightarrow C^* \swarrow^{C+\gamma}$

- From the shape of the angular distribution & comparison to a theoretical calculation

 → Angular momentum of the transferred particle
 ⇒ Orbital angular momentum *l* of the single particle bound state
 - From the normalisation of the calculations to the data
 → Alpha spectroscopic factor

$$\frac{d\sigma}{d\Omega}\Big|_{\exp} = C^{2}S'_{\alpha}S_{\alpha}\frac{d\sigma}{d\Omega}\Big|_{Th}$$

 $S'_{\alpha} = \langle {}^{7}Li | t \otimes \alpha \rangle = 1$ Kubo et al PRC 1978)

$$S_{\alpha} = \langle C | A \otimes \alpha \rangle$$

Theoretical description of transfer reaction

$X(=\alpha+b)+A \longrightarrow C^{*}(\alpha+A)+b$

The Model used to describe transfer reactions in general is: **DWBA** (Distorted Wave Born Approximation) & beyond

DWBA main assumptions:

- Nucleon or cluster transfer occurs directly between the two active channels X+A and C+b: the transferred nucleon or cluster is directly deposited on the final state (no rearrangement in the final nucleus)
- The entrance and exit channels processes are dominated by the elastic scattering \rightarrow Distorted waves
- The transfer process is weak enough to be treated as a first order perturbation \rightarrow Born Approximation

DWBA cross section for a transfer reaction can be written as :

$$\sigma_{tra} \propto \left\| \left\langle \chi_{f} I_{\alpha A}^{C} \middle| \hat{V} \middle| I_{b \alpha}^{X} \chi_{i} \right\rangle \right\|^{2}$$

 $\chi_{i,f}$ The distorted wave functions of the initial and final state

$\hat{\lambda}$ Transition operator

 $\varphi_{\alpha A}$

 $I_{\alpha A}^{C}(r_{\alpha A}) \& I_{b\alpha}^{X}(r_{b\alpha})$ the overlaping functions of the bound states C/X formed by α and A/b

The radial part $I_{\alpha A}^{C}$ is approximated : $I_{\alpha A}^{C}(r_{\alpha A}) = S_{\alpha A}^{1/2} \varphi_{\alpha A}(r_{\alpha A})$ S is the spectroscopic factor

Is the radial part of the bound state wave function describing the relative motion α +A in C

From a spectroscopic factors to a-decay reduced widths γ_{α}^{2} **or ANCs** \tilde{C}^{2}

DWBA calculations

• Codes: FRESCO, DWUCK, Thomson, Compt. Phys. Rep. 7, 167 (1988), P.D. Kunz spot.Colorado.edu/~kunz/DWBA.html)

• DWBA ingredients:

- > Appropriate choice of **optical potential** parameters to describe the **entrance** & **exit** channels
- → Elastic scattering measurements $\rightarrow X(A,A)X$, C(b,b)C or global optical model parametrizations for a given range of mass & energy (Perey & Perey Atom. nucl. Data Tabl. 17 (1976), Daehnick et al. PRC 21,6 (1980),...)
- Binding potential parameters describing the interaction of the transferred particle with the core in the final & initial nucleus
 - \rightarrow The depth V is adjusted to reproduce the binding energy of the bound state

 \rightarrow Geometry of potential ($\mathbf{r}_i, \mathbf{a}_i$) \rightarrow uncertainty on spectroscopic factor

Wood-Saxon
$$\longrightarrow V(r) = -\frac{V_0}{1 + \exp(\frac{r - r_i}{a_i})}$$
 $V_0: \text{ depth of the potential (MeV)}$
 $r_i: \text{ radius}$
 $a_i: \text{ diffusivity}$ $v_{0} = -50 \text{ MeV}$
 $r_{i} = 3.3 \text{ fm}$
 $a_i = 0.65 \text{ fm}$

Which alpha transfer reactions?

> (⁷Li,t), (⁶Li,d) alpha transfer reactions: \rightarrow to evaluate (α ,n) & (α , γ) reactions by extracting $S_{\alpha} \rightarrow \Gamma_{\alpha}$

<u>Note:</u> - $(^{7}\text{Li},t) \rightarrow \text{less}$ affected by multi-step effects F.H and N. de Séréville, fphy.2020.602920 & references therein

- \rightarrow cross-sections to low spin states enhanced because of the non-zero α -angular momentum in ⁷Li: J^{π}(⁷Li)=1/2⁺ J^{π}(t)=3/2⁺ \Rightarrow L_{α}=1 \rightarrow less momentum mismatch
- \rightarrow angular distributions \rightarrow stronger direct features: more forward pronounced maxima

 \rightarrow populate more selectively states with α structure

- e.g : ${}^{13}C({}^{7}Li,t){}^{17}O$ for ${}^{13}C(\alpha,n){}^{16}O$ Pellegriti et al. PRC (R) 2008 ${}^{12}C({}^{7}Li,t){}^{16}O$ for ${}^{12}C(\alpha,\gamma){}^{16}O$ Oulebsir et al. PRC 2012 ${}^{7}Li({}^{22}Ne,t){}^{26}Mg$ (ANC) for ${}^{22}Ne(\alpha,n){}^{25}Mg$ Jayatissa et al. PRC 2020
- → Cluster transfer \Rightarrow Describe the interaction potential of $<\alpha+t$ |⁷Li> overlaps for (⁷Li,t) transfer \rightarrow Finite range DWBA (FR-DWBA)

(E) 1 0.9

0.8

0.6 0.5

0.4 0.3 0.2 0.1

s-process in rotating metal-poor massive stars

²²Ne(α ,n)²⁵Mg

- s-process nucleosynthesis \rightarrow half of the abundance of heavy elements in Universe
- 60 < A < 90 (weak s-process component) \rightarrow massive stars M>8M_{\odot}

Core He burning $(T \sim 3.10^8 \text{ K}, \text{ N}_{\text{n}} = 10^6 \text{ cm}^{-3})$ & shell Carbon burning $(T \sim 10^9 \text{ K}, \text{ N}_n = 10^{11} \text{ cm}^{-3})$

- Metal-poor massive stars \rightarrow negligible *s*-process production (low ²²Ne & Fe seed abundance)

.

With fast rotation induced mixing \longrightarrow ²²Ne production in He core strongly enhanced Nishimura+16, Choplin+18

large production of *s*-elements between Strontium & Barium 90 < A < 140

- Enhanced weak s-process (es-process) Frischknecht+16
- \rightarrow Important impact on chemical enrichment in early galaxies.

 \rightarrow Source of heavy elements such as Barium in early universe? Barbuy+14 \rightarrow Origin of the observed enhanced s-elements in globular cluster NGC6522 **Barbuy+09** & in CEMP stars **Beers+05** ?

s-process in rotating metal-poor massive stars

But the final abundances of the enhanced weak *s*-process strongly depends on: ${}^{16}O(n,\gamma){}^{17}O$ neutron poison effect & ${}^{17}O(\alpha,n)/{}^{17}O(\alpha,\gamma)$ reaction rate ratio

 \rightarrow neutron recycling efficiency

Calculation with ¹⁷O(α ,n)²⁰Ne Nacre adopted rate & ¹⁷O(α , γ)²²Ne CF88 rate

Present status on ¹⁷O(α ,n)²⁰Ne and ¹⁷O(α , γ)²¹Ne

- Core He burning: T ~0.2-0.3 GK \rightarrow E_{c.m}~ 0.297-0.646 MeV \rightarrow E_x=7.64-8.00 in ²¹Ne
- Shell Carbon burning: T~1 GK \rightarrow E_{c.m}~ 0.783-1.5 MeV \rightarrow E_x=8.13-8.85 in ²¹Ne

$\frac{17O(\alpha,n)^{20}Ne \& 17O(\alpha,\gamma)^{21}Ne}{17O(\alpha,\gamma)^{21}Ne}$ direct measurements:

- Denker+1994, Best+2013 \rightarrow 0.63 \leq E_{cm} \leq 1.8MeV
- Best +2011, Taggart+2019
- Williams+2022

0.63≤E_{cm}≤1.33MeV

- No direct measurements @ $E_{cm} < 0.63$ MeV (Core He burning)
- Spectroscopy of ²¹Ne: E_x , S_α or Γ_α , J^π , $\Gamma_\gamma/\Gamma_{tot}$, Γ_n ... $\stackrel{\text{(a,n)}}{\Rightarrow}$ ¹⁷O(α ,n) and ¹⁷O(α , γ) rates (core He burning)
- → Unknown or poorly known $S_{\alpha}(\Gamma_{\alpha})$ & Γ_{n} , $\Gamma_{\gamma}/\Gamma_{tot}$ → Few have spin-parity assignments
- Neutron transfer reaction $\rightarrow S_n \rightarrow \Gamma_n$ Frost-Schenk+MNRAS2022 • α -transfer reaction $\rightarrow S_n \rightarrow \Gamma_n$ (present work/MLL-exp)

Study of ²¹Ne states via ¹⁷O(⁷Li,t)²¹Ne α-transfer reaction

Q3D spectrometer (MLL)

- Beam ⁷Li: E=28 MeV I=100 nAe
- Targets:

 W¹⁷O₃ (41 μg/cm²) enriched at 35% on ^{nat}C
 W^{nat}O₃ (39 μg/cm²) on ^{nat}C
- Solid angle: 6 to 12.4 msr
- Energy resolution $\Delta E/E \sim 2 \times 10^{-4}$

$d\sigma/d\Omega$ measurements:

- 9 angles $\theta_{lab} = 6^{\circ} 36^{\circ} \Rightarrow \theta_{cm} \rightarrow 7.5^{\circ} 45^{\circ}$
- on $W^{17}O_3$ & on $W^{nat}O_3$ for calibration & background evaluation
- At 3 different times at 6° to check the stability of the target

Position

Excitation energy spectrum of ²¹Ne

• Fit with multiple skewed gaussians with common width & exponential factor

Experimental energy resolution (FWHM) : ~ 30 keV (6°) - 71 keV (36°)

FR-DWBA calculations

 Good description of the data by DWBA → Direct transfer mechanism

• <u>Triplet 8.160/8.155/8.146</u>: Fit with 3 components $\rightarrow S_{\alpha}$ of 8.146 & 8.160 MeV derived from Γ_{α} Best+2013 $\Rightarrow S_{\alpha}(8.155 \text{ MeV})=0.15$ (present work)

• <u>Doublet 7.980/7.982 MeV</u>: Fit with 2 components $\rightarrow S_{\alpha}$ of 7.98 MeV deduced using $\omega\gamma(\alpha, n)$ Denker+94 $\Rightarrow S_{\alpha}(7.982 \text{ MeV})=0.005$ (present work)

• <u>7.820 MeV</u>

 \rightarrow Best χ^2 for L_{α}=0,1 & good for L_{α}=2

$$\rightarrow L_{\alpha} = 0 \rightarrow S_{\alpha} = 0.61$$
 (unlikely)

$$S_{\alpha} \rightarrow \Gamma_{\alpha} = 2P_l \frac{\hbar^2 R}{2\mu} S_{\alpha} |\phi(R)|^2$$

@ R=7.5 fm

• Γ_{α} uncertainty: 3- 40% (stat), 35% (optical pot)

¹⁷O(α ,n) & ¹⁷O(α , γ) reaction rates & (α ,n)/(α , γ) rate ratio

Rates calculations:

RateMC code Longland+2013

□ For Er < 721 keV & Er=807 keV: Γ_{α} (present work) Γ_{α} (7.82MeV) for L_{α} =1 (L_{α} =0 in Best+2013)

 Γ_{α} (7.74 MeV) for L_{α}=0 (as in Best+2013)

 $\rightarrow \Gamma_n$ Frost-Schenk+2022

□ For Er≥ 721 keV : → Γ_{α} & Γ_{n} (Best+2013 direct measurement)

 $\Box \Gamma_{\gamma}$ from:

→ systematics of $\langle \tau \rangle_{\text{meas}}$ (Rolfs+72) → $\omega\gamma(\alpha,\gamma)$ Williams+2022 combined with present Γ_{α} & Γ_{n} (Frost Schenk+22) → when no $\Gamma_{n} \rightarrow \Gamma_{\gamma}/\Gamma_{n}$ Best+2013

→ Better neutron efficiency recycling with a factor of about 20 with the present rates than Best+2013 rates

Resonances contribution to the rates

Impact on the s-process in rotating poor-metal massive stars

• One-zone nucleosynthesis calculation mimicking the core He-burning phase of a low metallicity rotating massive star (Z=0.001, M=25 M_{\odot})

 \rightarrow Large enhancement (>1.5 dex (>1.3 dex)) of elements 40 < Z < 60 with the present new rates in comparison to Best+13 rates

 \rightarrow Two order of magnitude (~1.5 dex (case2)) on Barium : largest effect

F. H, P. Adsley, L.Lamia+submitted to PRL

Case II:

¹⁵O(α,γ)¹⁹Ne & X-ray burst nucleosynthesis

¹⁵O(α, γ)¹⁹Ne:

Present Status & strategy

Experimental characteristics for α -transfer reactions with **RIB**

 $Y=N/t=N_{proj} \times N_{target} \times d\sigma/d\Omega \times \Delta\Omega$

 $(^{7}Li,t)$ with stable beam

- $I_{\text{beam}} \sim 100 \text{ pnA}, q = 3 \rightarrow N_{\text{proj}} \sim 2.10^{11} \text{ pps}$
- target thickness~ $100 \,\mu g/cm^2 \rightarrow N_{target} \sim 4.10^{18} \, at/cm^2$
- $\Delta \Omega \sim 5 \text{ msr}$ (e.g. Split-pole, Q3D magnetic spectrometers)

(⁷Li,t) with RIBs

- Beam intensity: Typical 10^5 pps $[^{15}O \sim 10^7 \text{ pps}] \rightarrow 6$ orders of mag. less wrt stable beams

 $\rightarrow N_{\text{proj}} \times N_{\text{target}} \times \Delta \Omega \sim 4 \text{ s}^{-1} \text{ mb}^{-1} \text{ sr}$

Light particle detection system (tritons)

 \rightarrow need of large coverage detection system : silicon array $\Delta \Omega \sim 2\pi$ sr

- \rightarrow 3 orders of mag. higher wrt stable beams \bigcirc
- Target thickness
 - \rightarrow Typical ~ mg/cm² (one order of mag. higher)

 \rightarrow Compromise between statistics and energy resolution \bigcirc

 $\rightarrow N_{\text{proj}} \times N_{\text{target}} \times \Delta \Omega \sim 0.04 \text{ s}^{-1} \text{ mb}^{-1} \text{ sr}$

Very challenging experiments... but feasible!

- \blacktriangleright Relatively long: ~10 days
- Relatively "low" statistics

¹⁵O(α,γ)¹⁹Ne case:

Experiment & results

 \Rightarrow Studied via ⁷Li(¹⁵O,t)¹⁹Ne*(γ)¹⁹Ne @ **SPIRAL1/GANIL**

J.Sanchez Rojo, C. Diget, N. de Séréville & AGATA-MUGAST-VAMOS coll

MUST2

DSSSD 300 μm + Csl

128+128 strips

128+128 strips

Triple coincidence: AGATA – HPGe for prompt-γ & MUGAST-DSSDE for light particle t & VAMOS-Spectrometer for ¹⁹Ne recoil

VAMOS @ $0^{\circ}2$ • $\Delta\Theta \pm 7^{\circ}$

ΔBρ ± 10° (~)

¹⁵O(α,γ)¹⁹Ne case:

Experiment & results

 \Rightarrow Studied via ⁷Li(¹⁵O,t)¹⁹Ne*(γ)¹⁹Ne @ **SPIRAL1/GANIL**

J.Sanchez Rojo, C. Diget, N. de Séréville & AGATA-MUGAST-VAMOS coll

Summary

Advantages of alpha-transfer reactions

- High cross sections
- Can be used to extract alpha partial widths (spectroscopic factors), angular momenta, resonance energy of key resonant reaction cross-sections

Limitations & warnings

- Sensitivity of the spectroscopic factors to potential parameters \rightarrow 30-40% uncertainty
- Be aware about other possible reaction mechanisms:
 - \rightarrow Multi-step transfer
 - \rightarrow Compound nucleus : Hauser-Feschbach calculations (statistical model) needed

Bibliography

1.H. A. Bethe and S. Butler, Phys. Rev. 85 (1952) 1045
2.M. H. MacFralane and J. B. French, Rev. Mod. Phys. 32 (1960) 567
3. I. J Thompson, FM Nunes FM. Nuclear reactions for astrophysics: Principles, Calculation and Applications of Low-Energy Reactions (Cambridge University Press) (2009). doi:10.1017/CBO9781139152150
4.F.H and N. de Séréville, fphy.2020.602920

Collaboration

¹⁷O(⁷Li,t)²¹Ne experiment

FH, P. Adsley (Texas AM), L. Lamia (LNS-Catania), D. S. Harrouz (IJCLab-Orsay), N. de Séréville (IJCLab-Orsay), B. Bastin (GANIL), A. Choplin (ILB-Brussels), T. Faestermann (MLL), C. Fougères (GANIL), R. Hertenberger (MLL), R. Hirschi (Keele), M. La Cognata (LNS-Catania), A. Meyer (IJCLab-Orsay), S. Palmerini (Perugia), R. G. Pizzone (LNS-Catania), F.de Oliveira Santos (GANIL), S. Romano (LNS-Catania), A. Tumino (LNS-Catania) and H.-F. Wirth (MLL)

¹⁵O(7Li,t)¹⁹Ne experiment

J.Sanchez Rojo (York), C. Diget (York), N. de Séréville (IJCLab-Orsay) & AGATA-MUGAST-VAMOS collaboration

THANK YOU FOR YOUR ATTENTION