Atomic recipes for astronomical transients... ...and relative experimental setups!

S. Cristallo

INAF – Osservatorio Astronomico d'Abruzzo (Italy) INFN – Sezione di Perugia (Italy)

Collaborators: M. Bezmalinvich, D. Vescovi, E. Loffredo, A.Perego, A. Fiore, S. Giuliani, A. Pidatella

Finanziato dall'Unione europea NextGenerationEU

Outline

- The «ingredients» of a kilonova lightcurve
- The importance of atomic opacities
- The PANDORA experiment

Italiadomani Piano nazionale Di Ripresa e resilienza

Italiadomani Di Rippesa e resilienza

Сл	Zn	Ga	Ge	As	Se	Br	Kr	Rb	Sr	Y	Zr
65	66										
	67									_	
	68	69	70								
	70	71	72							- r	
			73							prod	
			74	75	76					ess	
					77						
			76		78	79	80				
					80	81	82				
							83				
					82		84	85	86		
			~						87		
							86	87	88	89	90
											91

Italiadomani Piano nazionale Di Ripresa e resilienza

A **KILONOVA** (**KL**) arises from a *translucent* stage of the expanding ejecta, when thermal radiation can escape. Its energy results from a balance between thermalization processes and the warm-up due to nuclear fissions and decays (α and β).

Basic ideas:

- <u>radioactive decay</u> of freshly sinthesized *r*-process elements in the expanding ejecta (0.1-0.2c) release **nuclear energy**;
- thermalization of high energy decay products with ejecta;
- **3. diffusion** of thermal photons during ejecta expansion;
- 4. thermal emission of photons at photosphere.

Key ingredients

- Numerical relativity simulations of BNS mergers: physical trajectories are needed to determine the physical conditions to which matter is exposed during a BNS (fix velocity and mass of the ejecta);
- 2. **r-process nucleosynthesis calculations:** r-process yields are needed to properly compute KLs because, depending on the chemical species, different types of KLs can be obtained;
- **3. Heating efficiencies:** thermalization of high-energy decay radiation directly affects the luminosity of a kilonova;
- 4. Heavy element atomic opacities: a fundamental input to properly compute KLs are atomic opacities, which regulate the interaction between the emerging radiation and the expanding plasma;
- **5.** Radiative transfer code: last but not least, a tool combining all the aforelisted inputs is needed to properly determine local thermodynamic variables.

The transition from blue-KN to red-KN

A kilonova lightcurve

The *bolometric luminosity* is a measure of the total radiation emitted at all wavelengths.

INAF ISTITUTO NAZIONALE DI ASTROFISICA Osservatorio Astronomico d'Abruzzo

A kilonova lightcurve

The *bolometric luminosity* is a measure of the total radiation emitted at all wavelengths.

Nuclear heating rate

Nuclear heating rate

 $Q = M_{initial} - M_{final}$ $\lambda = decay rate$

Heating efficiencies

$$\frac{d\varepsilon}{dt} = \dot{\varepsilon}_0 \left(\frac{1}{2} - \frac{1}{\pi} \arctan\left[\frac{t - t_0}{\sigma}\right] \right)^{\alpha} \left(\frac{1}{2} + \frac{1}{\pi} \arctan\left[\frac{t - t_1}{\sigma_1}\right] \right)^{\alpha_1} + C_1 e^{-t/\tau_1} + C_2 e^{-t/\tau_2} + C_3 e^{-t/\tau_3} \tag{2}$$

Nuclear heating rate

Heating efficiencies

$$\frac{d\varepsilon}{dt} = \dot{\varepsilon}_0 \left(\frac{1}{2} - \frac{1}{\pi} \arctan\left[\frac{t - t_0}{\sigma}\right] \right)^{\alpha} \left(\frac{1}{2} + \frac{1}{\pi} \arctan\left[\frac{t - t_1}{\sigma_1}\right] \right)^{\alpha_1} + C_1 e^{-t/\tau_1} + C_2 e^{-t/\tau_2} + C_3 e^{-t/\tau_3} \tag{2}$$

...13 free parameters...

With four parameters I can fit an elephant, and with five I can make him wiggle his trunk. [J. VON NEUMANN]

A kilonova lightcurve

Bolometric curve of at2017gfo

RT equation

$$\frac{\mathrm{d}I_{\nu}}{\mathrm{d}\tau_{\nu}} = S_{\nu} - I_{\nu}$$

Optical depth

Source function (emissivity to absorption ratio)

$$\tau_{\nu}(D) = \int_{0}^{D} \alpha_{\nu}(s) \, \mathrm{d}s$$
$$\alpha_{\nu} = \kappa_{\nu}\rho$$

κ_v is the frequency-dependent opacity of the medium

$$l_{\text{free},\nu} = \frac{1}{\rho \kappa_{\nu}}$$

Photon mean free path

Radiative Transfer (RT) basics

The ejecta is extremely hot immediately after the merger. This thermal energy cannot initially escape as radiation because of its high optical depth at early times:

$$\tau \simeq \rho \kappa R = \frac{3M\kappa}{4\pi R^2} \simeq 70 \left(\frac{M}{10^{-2}M_{\odot}}\right) \left(\frac{\kappa}{1\,\mathrm{cm}^2\,\mathrm{g}^{-1}}\right) \left(\frac{v}{0.1c}\right)^{-2} \left(\frac{t}{1\,\mathrm{day}}\right)^{-2}$$

and the correspondingly long photon diffusion timescale through the ejecta:

$$t_{\rm diff} \simeq \frac{R}{c} \tau = \frac{3M\kappa}{4\pi cR} = \frac{3M\kappa}{4\pi cvt}$$

Radiative Transfer (RT) basics

Radiation can escape when the diffusion timescale is equal to the expansion timescale, when the lightcurve peaks:

$$t_{\rm peak} \equiv \left(\frac{3M\kappa}{4\pi\beta vc}\right)^{1/2} \approx 1.6 \, {\rm d} \; \left(\frac{M}{10^{-2}M_{\odot}}\right)^{1/2} \left(\frac{v}{0.1c}\right)^{-1/2} \left(\frac{\kappa}{1\,{\rm cm}^2\,{\rm g}^{-1}}\right)^{1/2} \, {\rm d} \; {\rm$$

The corresponding luminosity is:

$$L_{\text{peak}} \sim 1.1\varepsilon \times 10^{41} \frac{\text{erg}}{\text{s}} \left(\frac{k_{\gamma}}{\text{cm}^2 \text{g}^{-1}}\right)^{-\alpha/2} \left(\frac{\nu}{0.1c}\right)^{\alpha/2} \left(\frac{M}{0.01 \text{M}_{\odot}}\right)^{1-\alpha/2},$$

Radiative Transfer (RT) basics

Radiation can escape when the diffusion timescale is equal to the expansion timescale, when the lightcurve peaks:

$$t_{\rm peak} \equiv \left(\frac{3M\kappa}{4\pi\beta vc}\right)^{1/2} \approx 1.6\,{\rm d}~\left(\frac{M}{10^{-2}M_{\odot}}\right)^{1/2} \left(\frac{v}{0.1c}\right)^{-1/2} \left(\frac{\kappa}{1\,{\rm cm}^2\,{\rm g}^{-1}}\right)^{1/2}$$

The corresponding luminosity is:

$$\mathcal{L}_{\text{peak}} \sim 1.1 \varepsilon \times 10^{41} \frac{\text{erg}}{\text{s}} \left(\frac{k_{\gamma}}{\text{cm}^2 \text{g}^{-1}}\right)^{-\alpha/2} \left(\frac{\nu}{0.1c}\right)^{\alpha/2} \left(\frac{M}{0.01 \text{M}_{\odot}}\right)^{1-\alpha/2},$$

In these formulas, κ is assumed <u>CONSTANT in time</u> and independent from chemical abundances (and, therefore, <u>independent from the frequency</u>). HOWEVER, opacity **heavily depends on the wavelenghts** and **evolves with time** by reflecting changes in density and temperature (and, THUS, ionization/excitation states).

A kilonova lightcurve

Bolometric curve of at2017gfo

A kilonova lightcurve

Bolometric curve of at2017gfo

Chemical abundances come from network calculations. But the question is: how do they interact with radiation?

Atomic opacities

Opacity (κ_v) , which is proportional to the plasma atomic level population and to radiative process cross sections, regulates the energy exchange between radiation and plasma, via multiple absorption-scattering processes through the radiative transport, and arises from the blending of millions of atomic line transitions.

According to the famous 'drunkard's walk' problem, the distance a drunk, making random left and right turns, gets from the lamp post is his typical step size times the square root of the number of steps he takes: $D \approx d_{feet} * (N_{steps})^{0.5}$.

Atomic opacities

Opacity (κ_v) , which is proportional to the plasma atomic level population and to radiative process cross sections, regulates the energy exchange between radiation and plasma, via multiple absorption-scattering processes through the radiative transport, and arises from the blending of millions of atomic line transitions.

According to the famous 'drunkard's walk' problem, the distance a drunk, making random left and right turns, gets from the lamp post is his typical step size times the square root of the number of steps he takes: $D \approx d_{feet} * (N_{steps})^{0.5}$.

TAKE HOME MESSAGE FOR STUDENTS:

tonight check how many steps you need to return to your room at Waldwirt Hotel!!!

Absorption Coefficient

$$\alpha_{\nu} = \mathcal{N}_l \left(1 - \frac{\mathcal{N}_u g_l}{\mathcal{N}_l g_u} \right) \frac{\pi e^2}{mc} f_{lu} \phi(\nu) \qquad (cm^{-1})$$

Absorption Coefficient

$$\alpha_{\nu} = \mathcal{N}_l \left(1 - \frac{\mathcal{N}_u g_l}{\mathcal{N}_l g_u} \right) \frac{\pi e^2}{mc} f_{lu} \phi(\nu) \qquad (cm^{-1})$$

Number of electrons in the upper and lower states

State wavefunction

Radiative transition data

Absorption Coefficient

Number of electrons in the upper and lower states

State wavefunction

Radiative transition data

Absorption Coefficient

Number of electrons in the upper and lower states

State wavefunction

Radiative transition data

Free-free transitions

Absorption Coefficient

 (cm^{-1})

Number of electrons in the upper and lower states

 $\alpha_{\nu} = \mathcal{N}_l \left(1 - \frac{\mathcal{N}_u g_l}{\mathcal{N}_l g_u} \right) \frac{\pi e^2}{mc} f_{lu} \phi(\nu)$

State wavefunction

Radiative transition data

Free-free transitions

Bound-free transitions

Absorption Coefficient

 (cm^{-1})

Number of electrons in the upper and lower states

 $\alpha_{\nu} = \mathcal{N}_l \left(1 - \frac{\mathcal{N}_u g_l}{\mathcal{N}_l g_u} \right) \frac{\pi e^2}{mc} f_{lu} \phi(\nu)$

State wavefunction

Radiative transition data

Free-free transitions

Bound-free transitions

Bound-bound transitions

Atomic opacities

Kilonova emission is centered in the optical/IR band, as this is the first spectral window through which the expanding merger ejecta becomes transparent.

Atomic opacities

Kilonova emission is centered in the optical/IR band, as this is the first spectral window through which the expanding merger ejecta becomes transparent.

At the lowest frequencies (radio and far-IR), free-free absorption from ionized gas dominates (red line). As the ejecta expands, the free-free opacity will decrease rapidly due to the decreasing density $\rho \alpha t^3$ and the fewer number of free electrons as the ejecta cools and recombines.

LATE TIME KILONOVA

Atomic opacities

Kilonova emission is centered in the optical/IR band, as this is the first spectral window through which the expanding merger ejecta becomes transparent.

Throughout the far UV and X-ray bands, bound-free transitions of the ejecta dominates the opacity (blue line). This prevents radiation from escaping the ejecta at these frequencies.

VERY EARLY TIME KILONOVA

Atomic opacities

Kilonova emission is centered in the optical/IR band, as this is the first spectral window through which the expanding merger ejecta becomes transparent.

near-IR/optical frequencies At (brown line), the dominant source of opacity is a dense forest of line (bound-bound) transitions. The magnitude this of opacity is determined by the strengths and wavelength density of the lines, which in turn depend sensitively on the ejecta composition.

0.5d - 5d KILONOVA

Atomic opacities

Chemical elements contribute to the global opacity with very different contributions, basing on their **electronic configuration** and their **abundance**.

Atomic opacities

Chemical elements contribute to the global opacity with very different contributions, basing on their **electronic configuration** and their **abundance**. In particular, open f-shell elements (lanthanides) have larger opacities than the elements with other outermost electron shells.

f-shell orbitals

1 IA	-	100		Т	he P	Perio	dic 1	[able	of	Flen	nent	S					18 VIIA
'n	2 84				ine i	ento	are	abit		Licii	iene	13 18	14 IVA	15 VA	16 VIA	17 VIA	He
Li	Be	ATOMIC N	VUMBER - 1 SYMBOL -	H								^s B	°с	'N	* 0	۴	¹⁰ Ne
¹¹ Na	¹² Mg	3	4	s ve	6 118	2	8 VIIB	9 V108	10 V108	11	12 18	¹³ Al	¹⁴ Si	¹⁵ P	¹⁶ S	¹⁷ Cl	Ar
¹⁹ K	°Ca	Sc	22 Ti	23 V	24 Cr	Mn	Fe	27 Co	28 Ni	29 Cu	³⁰ Zn	Ga	³² Ge	³³ As	³⁴ Se	35 Br	³⁶ Kr
³⁷ Rb	³⁸ Sr	³⁹ Y	⁴⁰ Zr	41 Nb	42 Mo	43 Tc	⁴⁴ Ru	45 Rh	⁴⁶ Pd	47 Ag	⁴⁸ Cd	49 In	^{so} Sn	si Sb	⁵² Te	53 	⁵⁴ Xe
⁵⁵ Cs	⁵⁶ Ba	57-71 La-Lu	" Hf	73 Ta	⁷⁴ W	⁷⁵ Re	76 Os	" Ir	Pt	⁷⁹ Au	во Нg	⁸¹ TI	⁸² Pb	⁸³ Bi	⁸⁴ Po	⁸⁵ At	⁸⁶ Rn
⁸⁷ Fr	** Ra	89-103 Ac-Lr	¹⁰⁴ Rf	¹⁰⁵ Db	¹⁰⁶ Sg	107 Bh	¹⁰⁸ Hs	Mt	Ds	Rg	Cn	¹¹³ Nh	II4 Fl	Мс	116 Lv	117 Ts	118 Og
LANTH	HANIDES	57 La	^{ss} Ce	⁵⁹ Pr	⁶⁰ Nd	61 Pm	⁶² Sm	63 Eu	⁶⁴ Gd	⁶⁵ Tb	[©] Dy	67 Ho	⁶⁸ Er	⁶⁹ Tm	⁷⁰ Yb	²¹ Lu	1
ACTI	NIDES	⁸⁹ Ac	°″Th	Pa Pa	92 U	93 Np	94 Pu	95 Am	[%] Cm	97 Bk	⁹⁸ Cf	99 Es	¹⁰⁰ Fm	Md	102 No	103 Lr	

1 IA	1			Т	he P	erio	dic ⁻	Table	e of	Elen	nent	S					18 VIIA
н	2 84											13 108	14 NA	15 VA	16 VIA	17 VIA	He
Li	Be	ATOMIC	VUMBER - 1 SYMBOL -	H								^s B	۴C	'N	⁸ O	۴	¹⁰ Ne
Na	¹² Mg	1	4	s va	6 V8	2	8	9 V00	10 Vitit		12	¹³ Al	¹⁴ Si	¹⁵ P	¹⁶ S	¹⁷ Cl	¹⁸ Ar
¹⁹ K	²⁰ Ca	21 Sc	²² Ti	23 V	²⁴ Cr	²⁵ Mn	Fe	27 Co	28 Ni	29 Cu	³⁰ Zn	Ga	³² Ge	³³ As	³⁴ Se	35 Br	³⁶ Kr
Rb	³⁸ Sr	39 Y	⁴⁰ Zr	41 Nb	42 Mo	43 Tc	⁴⁴ Ru	45 Rh	* ⁶ Pd	47 Ag	48 Cd	49 In	^{so} Sn	si Sb	⁵² Te	53 	S4 Xe
⁵⁵ Cs	66 Ba	57-71 La-Lu	" Hf	" Ta	24 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	® Hg	⁸¹ TI	⁸² Pb	⁸³ Bi	⁸⁴ Po	⁸⁵ At	⁸⁶ Rn
87 Fr	** Ra	89-100 A						100									

LANTHANIDES

ACTINIDES

Identification of strontium in the merger of two neutron stars

Darach Watson^{1,2}, Camilla J. Hansen^{3,*}, Jonatan Selsing^{1,2,*}, Andreas Koch⁴, Daniele B. Malesani^{1,2,5}, Anja C. Andersen¹, Johan P. U. Fynbo^{1,2}, Almudena Arcones^{6,7}, Andreas Bauswein^{7,8}, Stefano Covino⁹, Aniello Grado¹⁰, Kasper E. Heintz^{1,2,11}, Leslie Hunt¹², Chryssa Kouveliotou^{13,14} Giorgos Leloudas^{1,5}, Andrew Levan^{15,16}, Paolo Mazzali^{17,18}, Elena Pian¹⁹ [See end for affiliations]

G. Gaigalas⁹, ¹* P. Rynkun⁹, ¹* S. Banerjee,² M. Tanaka⁹,^{2,3} D. Kato^{94,5} and L. Radžiūtė⁹¹

Astronomical Institute, Tohoku University, Sendai 980-8578, Japan

Division for the Establishment of Frontier Sciences, Organization for Advanced Studies, Tohoku University, Sendai 980-8577, Japan National Institute for Fusion Science, 322-6 Oroshi-cho, Toki 509-5292, Japan

⁵Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Kasuga, Fukuoka 816-8580, Japan

Deservatorio Astronomico d'Abruzzo

I M		200		Т	he P	erio	dic ⁻	Table	e of	Elen	nent	S					18 VIIA
Гн	2 84											13 108	14 WA	15 VA	16 VIA	17 VEA	He
Li	Be	ATOMIC	NUMBER - 1 SYMBOL -	Н								^s B	°с	'N	* O	۶F	¹⁰ Ne
¹¹ Na	¹² Mg	3	4 M	s VB	6 V8	2 100	8 V10	9 V108	10 V108	1	12 18	¹³ Al	¹⁴ Si	¹⁵ P	¹⁶ S	¹⁷ Cl	¹⁸ Ar
¹⁹ K	°Ca	21 Sc	22 Ti	23 V	24 Cr	Mn	Fe	27 Co	28 Ni	29 Cu	³⁰ Zn	Ga	³² Ge	³³ As	Se	35 Br	³⁶ Kr
³⁷ Rb	³⁸ Sr	39 Y	⁴⁰ Zr	41 Nb	42 Mo	43 Tc	⁴⁴ Ru	45 Rh	* Pd	47 Ag	48 Cd	49 In	^{so} Sn	51 Sb	^{s2} Te	53 	⁵⁴ Xe
⁵⁵ Cs	⁵⁶ Ba	57-71 La-Lu	n Hf	73 Ta	⁷⁴ W	⁷⁵ Re	⁷⁶ Os	⁷⁷ Ir	Pt	⁷⁹ Au	[∞] Hg	⁸¹ TI	⁸² Pb	⁸³ Bi	⁸⁴ Po	⁸⁵ At	⁸⁶ Rn
87	EI Do	89-103	104 Df	105	106 S.a	107 Db	108 - -c	109	110	111 Pa	112 Cn	113 Nib	114	115 Mc	116 LV	117 Ts	118 Og
Mont royal astro	hly Notic of the onomical s	COCIETY											Reveal Automatical Society		1/	1.	

MNRAS 515, L89–L93 (2022) Advance Access publication 2022 July 29

Tm

Md

101

Lu

Lr

103

Yb

No

102

Tungsten versus Selenium as a potential source of kilonova nebular emission observed by Spitzer

Kenta Hotokezaka, ^{1,2★} M	Iasaomi Tanaka ⁹ , ^{3,4} Daiji Kato ^{5,6} and Gediminas Gaigalas ⁷
¹ Research Center for the Early Univ.	erse, Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo 113-0033, Japan
² Kavli IPMU (WPI), UTIAS, The Un	iversity of Tokyo, Kashiwa, Chiba 277-8583, Japan
³ Astronomical Institute, Tohoku Univ	versity, Sendai 980-8578, Japan
Anter a la maine a am	

⁴Division for the Establishment of Frontier Sciences, Organization for Advanced Studies, Tohoku University, Sendai 980-8577, Japan

⁵National Institute for Fusion Science, 322-6 Oroshi-cho, Toki 509-5292, Japan

⁶Department of Advanced Energy Engineering Science, Kyushu University, Kasuga, Fukuoka 816-8580, Japan

⁷Institute of Theoretical Physics and Astronomy, Vilnius University, Saulėtekio Ave. 3, Vilnius, Lithuania

LANTH/	Fr	Cs	Rb	°к	Na		Li	н	1 IA
ANIDES	** Ra	^{se} Ba	[≫] Sr	20 Ca	Mg	12	⁴ Be	2	1
⁵⁷ La ⁸⁹ Ac	Ac-Lr	La-Lu	³⁹ Y	21 Sc	3	4	ATOMIC		
⁹⁸ Ce ⁹⁰ Th	Rf	²² Hf	⁴⁰ Zr	22/ Ti		NAME -	NUMBER - 1 SYMBOL -		
⁵⁹ Pr 91 Pa	Db	⁷ ³ IPNAS, 1a	⁴ H. Ca ¹ Physiqu ² School	Ato		Hyd MNRAS	ROYAL .		Т
60 Nd 92 U	¹⁰⁶ Sg	Université	t rvajal C ue Atomique of Physics	mic da nova		513, 2302-	onthly N _{of the} Astronomi	11.2	he P
⁶¹ Pm ⁹³ Np	Bh	de Liège, S	Gallego, e et Astroph	ata aı emiss		-2325 (202 publicatio	lotices Ical socie	.	erio
Sm 94 Pu	Hs	Sart Tilman,	¹ J. C. F hysique, Un	nd op: ion sj		2) n 2022 Ap	ту		dic 7
⁶³ Eu ⁹⁵ Am	Mt	B-4000 Liè	Serengu iversité de l	acity o pectra		oril 27			Table
⁶⁴ Gd ∞ Cm	Ds	ge, Belgiun	t, ² P. Pa Mons, B-70	calcu 1					e of
⁶³ Tb ⁹⁷ Bk	Rg	n n	Imeri [®] 00 Mons, B	lation					Elen
[∞] Dy [∞] Cf	Cn	119	¹ and P. Belgium	is in L					nent
⁶⁷ Ho ⁹⁹ Es	Nh		Quinet	.a V−X					S
⁶⁸ Er ¹⁰⁰ Fm	FI	10	©1,3★	(ions				м	
⁶⁹ Tm ¹⁰¹ Md	Mc			for th		htt		10	
⁷⁰ Yb ¹⁰² No	Lv	1 10		ne inv		ps://doi.org		14	
²¹ Lu ¹⁰³ Lr	Ts	-		estiga		/10.1093/n		17	
59	¹¹⁸ Og			tion		inras/stac		He	18 VIIA

1 14	1	32		Т	he P	Perio	dic	Table	e of	Elen	nent	S					18 VIIA 2
Н	2 84	\sim	1												~		He
Li	Be	¢.	^s at	oms	5										MD	PI	¹⁰ Ne
Na	¹² Mg	Artic	le	The C	ماميرا	ation		NAI	II ar	J II	ні р	aları	ant f	• *			18 Ar
к	20 Ca	²³ Ki	lono	vae I	Mode	elling	g g	ING I	III al		III K	elev		0r		r	³⁶ Kr
Rb	³⁸ Sr	³⁹ Ricar and J	rdo F. Si José P. N	lva ^{1,2,} *(Iarques	, Jorge l	M. Samp	oaio ^{1,2} 10	, Pedro A	Amaro ³	D, Andro	eas Flörs	⁴ ©, Gal	briel Ma	rtínez-Pi	nedo ^{4,5,}	610	54 Xe
Cs	56 Ba	57-71 La-Lu	²² Hf	Та	²⁴ W	Re	⁷⁶ Os	²⁷ Ir	Pt	Au	[∞] Hg	TI	Pb	Bi	PO	At	⁸⁶ Rr
Fr	** Ra	89-103 Ac-Lr	¹⁰⁴ Rf	Db	Sg	Bh	¹⁰⁸ Hs	¹⁰⁹ Mt	Ds	"" Rg	Cn	¹¹³ Nh	FI	Мс	116 Lv	117 Ts	118 Og
	ANIDES	57 La	^{ss} Ce	^{s9} Pr	⁶⁰ Nd	⁶¹ Pm	⁶² Sm	63 Eu	Gd	⁶⁵ Tb	⁶⁶ Dy	67 Ho	⁶⁸ Er	⁶⁹ Tm	⁷⁰ Yb	Lu	1
LANTH						-		-									

 INAF INAF ISTTUTO NAZIONALE Di ASTROFISICA

1	1			Т	he P	erio	dic 7	Fable	e of	Elen	nent	s					18 VIIA 2
н	Mont	thly Not	ices												16 VA	17 VIA	He
³ Li	ROYAL ASTR MNRAS 509	of the RONOMICAL 9, 6138–61	society 54 (2022)								http	os://doi.org	/10.1093/m	nras/stab342	3 0	۴	10 Ne
"Na	Advance A	ccess pub	lication 2	021 Nove	mber 26	laula	tions	in Co	V	View	a fan	annli	action	. 40	s	17 CI	18 A
¹⁹ K	early l	-scale kilon	ova e	missi	on fro	om ne	uons eutroi	n star	mer	a lon gers	s lor	аррп	cation	1 10	Se	35 Br	36 Ki
Rb	H. Carva	a <mark>jal Gal</mark> tomique et .	lego, ¹ J	J. C. Be	rengut, rsité de Mo	² P. Palr ns, B-7000	neri ^{© 1} Mons, Belj	and P. (Quinet	1,3*					Те	53 	54 X
	2 School of D	Inning Ilmi	marrite of	Man Couth	Walar Sud	ANSW 20	152 Auster	12									
⁵⁵ Cs	² School of P. ³ IPNAS, Uni Da	hysics, Uni iversité de l La-Lu	versity of I Liège, Sart	New South Tilman, B-	Wales, Sydi 4000 Liège	ney NSW 20 2, Belgium NC	052, Austra	lia II	"	Au	r ig		10		Ро	⁸⁵ At	⁸⁶ Rr
⁵⁵ Cs	² School of Pl ³ IPNAS, Uni Da Ra	hysics, Uni iversité de l 89-103 AC-Lr	versity of f Liège, Sart 104 Rf	New South Tilman, B- 105 Db	Wales, Sydi 4000 Liège ¹⁰⁶ Sg	ney NSW 20 c, Belgium NC 107 Bh	108 HS	lia I 109 Mt	110 Ds	III Rg	112 Cn	III Nh	114 FI	115 Мс	Po 116 Lv	⁸⁵ At 117 Ts	86 Ri 118
SF CS Fr	2School of P. 3IPNAS, Uni Ba Ra HANIDES	hysics, Uni iversité de l B9-103 AC-Lr	versity of I Liège, Sart 104 Rf S ⁸ Ce	New South Tilman, B- 105 Db	Wales, Sydi 4000 Liège ¹⁰⁶ Sg	ey NSW 20 e, Belgium 107 Bh	108 Hs	109 Mt 63 Eu	Ds 64 Gd	¹¹¹ Rg ⁶⁵ Tb	112 Cn © Dy	III Nh ⁶⁷ Ho	114 Fl 68 Er	115 Mc	Po 116 Lv 70 Yb	⁸⁵ At ¹¹⁷ Ts ⁷¹ Lu	86 Ri 118 O

1 IA	1	122		Т	he P	erio	dic	Table	e of	Elen	nent	S					18 VIIA
н	2 11A											13 108	14 MA	15 VA	16 VA	17 VIA	He
Li	Be	ATOMIC N	ASTROPHYS	sical Journ	IAL SUPPLEM	MENT SERIES	, 248:17 (15	pp), 2020 M	ay		2	5 https://	doi.org/10.3	7 847/1538-43	8 365/ab8312	F	¹⁰ Ne
Na	¹² Mg	€ 202 8	20. The America Exter	an Astronomical	alculat	tions of	f Energ	ov Leve	els and	Trans	ition R	ates fo	or Singl	v Ioniz	CrossMark	CI	¹⁸ Ar
ĸ	20 Ca	21 S		Laima	Radžiūtė	, Gedimir	Lantha	as ¹ ⁽⁰⁾ , Da	lement	, Pavel Ry	r -Gd ynkun ¹ , ar	nd Masaon	mi Tanaka	4@		Br	³⁶ Kr
Rb	³⁸ Sr	39		¹ Institute ³ E	of Theoretic Department o	cal Physics a ² National I of Advanced ⁴ Astr 019 Decemb	and Astronor Institute for I Energy Eng conomical In- er 17: revise	ny, Vilnius U Fusion Scien incering Scien stitute, Tohol ed 2020 Mar	Jniversity, S ce, 322-6 O ence, Kyush ku Universit ch 20: acces	aulėtekio Av roshi-cho, To u University, y, Sendai 98 nted 2020 M	ve. 3, Lithua oki 509-5292 , Kasuga, Fu 30-8578, Japa arch 20: pul	nia; Laima.H 2, Japan kuoka 816-8 an blished 2020	Radziute@tfa 8580, Japan) <i>Ma</i> y 7	i.vu.lt		I	⁵⁴ Xe
Cs	^{se} Ba	La-Lu	Hf	Та	W	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
Fr	* Ra	89-103 Ac-Lr	Rf	Db	¹⁰⁶ Sg	Bh	108 Hs	Mt	Ds	Rg	Cn	¹¹³ Nh	114 Fl	Мс	116 Lv	117 Ts	118 Og
LANTH	IANIDES	⁵⁷ La	[®] Ce	^{s9} Pr	∞Nd	Pm	⁶² Sm	63 Eu	⁶⁴ Gd	⁶⁵ Tb	⁶⁶ Dy	67 Ho	⁶⁸ Er	⁶⁹ Tm	⁷⁰ Yb	²¹ Lu	1
		89	90	91	92	93	94	95	96	97	98	99	100	101	102	103	-

1 14	-			Т	ho P	orio	dic 1	Table	a of	Flom	nent	c					18 Vis
н	2 84	THE AST © 2021. The	ROPHYSICA e American A	AL JOURNAI	. SUPPLEME cicty. All right	ENT SERIES	, 257:29 (1	9pp), 2021	December				https://doi	.org/10.384	47/1538-43	65/ac1ad2	2 H
Li	Be] F	vtend	ed Ca	lculati	ions of	Fner	ov Le	vels a	nd Tre	ansitio	n Rat	es for	Singly	Ioniz	CrossMark	• N
Na	¹² Mg		Atenu	u ca	l	L	antha	nide H	Elemen	nts. II.	Tb-	Yb		onigiy	101112	au	¹⁸ A
¹⁹ K	°Ca		La	aima Rad Institute ol ³ Interd	žiūtė ' 💷 , Theoretica lisciplinary	Gedimir al Physics a ² National I Graduate S ⁴ Astronomic	nas Gaiga and Astrono institute for institute for institute for institute for	alas (10), I omy, Vilniu Fusion Sci ingineering tute Tobak	Daiji Kato s Universiti ience, 322- Sciences, I su Universit	O ²²⁰ , Pa y, Saulėtek 6 Oroshi-cl Kyushu Uni ty Aoba S	avel Ryn io Ave. 3, ho, Toki 50 iversity, Ka Sendai 980	kun', and Lithuania; 9-5292, Ja asuga, Fuku 8578 Japa	d Masaor Laima.Rad: pan loka 816-85 p	ni Tanaka ziute@tfai.v 580, Japan	a' 🔟 /u.lt		36 K
Rb	³⁸ Sr	\checkmark	۷r	DN	Received 20	D21 June 1	I; revised 2 RU	2021 July 1	5; accepted	4 2021 Aug	gust 2; publ	lished 2021	November	12 50	le		54 X
^s Cs	^{se} Ba	57-71 La-Lu	ⁿ Hf	73 Та	74 W	⁷⁵ Re	⁷⁶ Os	" Ir	Pt	Au	®Hg	⁸¹ TI	⁸² Pb	⁸³ Bi	⁸⁴ Ро	⁸⁵ At	86 F
Fr	** Ra	89-103 Ac-Lr	Rf	Db	Sg	107 Bh	108 Hs	Mt	Ds	""Rg	Cn	¹¹³ Nh	II4 Fl	Мс	116 Lv	Ts	118 C
LANTH	HANIDES	⁵⁷ La	[®] Ce	^{s9} Pr	∞Nd	Pm	⁶² Sm	Eu	⁶⁴ Gd	55 Tb	∞Dy	Ho	⁶⁸ Er	°″ Tm	Yb	Lu	1
ACTI	NIDES	⁸⁹ Ac	°°Th	Ра	92 U	93 Np	94 Pu	⁹⁵ Am	^ж Ст	97 Bk	⁹⁸ Cf	99 Es	¹⁰⁰ Fm	Md	102 No	103 Lr	1

Deservatorio Astronomico d'Abruzzo

1	1	225		Т	he P	erio	dic ⁻	Table	e of	Elen	nent	S					18 VIIA
н	2 84											13 108	14 NA	15 VA	16 VIA	17 VEA	He
Li	Be	ATOMIC	VUMBER - 1 SYMBOL -	H								^s B	° C	'N	* 0	F	¹⁰ Ne
Na	¹² Mg	3 100	4	s VB	6 VIB	2 V18	8 VIIB	9 V108	10 V908	11	12 18	¹³ Al	¹⁴ Si	¹⁵ P	¹⁶ S	¹⁷ CI	¹⁸ Ar
¹⁹ K	20 Ca	²¹ Sc	22 Ti	23 V	²⁴ Cr	²⁵ Mn	Fe	27 Co	²⁸ Ni	29 Cu	³⁰ Zn	Ga	Ge	³³ As	[™] Se	Br	³⁶ Kr
Rb	³⁸ Sr	39 Y	⁴⁰ Zr	41 Nb	42 Mo	43 Tc	[#] Ru	45 Rh	* Pd	47 Ag	** Cd	49 In	^{so} Sn	⁵¹ Sb	^{s2} Te	53 	⁵⁴ Xe
SS Cs	se Ba	57-71 La-Lu	" Hf	73 Ta	74 W	75 Re	76 OS	n Ir	Pt	⁷⁹ Au	Hg	⁸¹ TI	Pb	⁸³ Bi	⁸⁴ Po	⁸⁵ At	⁸⁶ Rn
Fr	** Ra	89-103 Ac-Lr	¹⁰⁴ Rf	¹⁰⁵ Db	Sg	107 Bh	108 Hs	Mt	Ds	Rg	Cn	Nh	II4 Fl	Mc	Lv	Ts	118 Og
u	Monthly	57 y Notices	58	59	60	61	62	63	64	65	80	67	~	Tm	⁷⁰ Yb	²¹ Lu	1
ROY MNF Adv	al astrono RAS 506, 35 ance Acces	the DMICAL SOCI 660–3577 (20 ss publication	ety 21) on 2021 J	uly 02						htt	ps://doi.org/	/10.1093/m	nras/stab186	¹⁰¹ Md	No	Lr	5

Constraints on the presence of platinum and gold in the spectra of the kilonova AT2017gfo

J. H. Gillanders¹,¹ M. McCann,² S. A. Sim,¹ S. J. Smartt¹ and C. P. Ballance²

Astrophysics Research Centre, School of Mathematics and Physics, Queen's University Belfast, BT7 INN Belfast, UK Centre for Theoretical Atomic, Molecular and Optical Physics, School of Mathematics and Physics, Queen's University Belfast, BT7 INN Belfast, UK

1 UA 1	1			Т	he P	erio	dic ⁻	Table	e of	Elen	nent	s					18 VIIA 2
н	2 84											13 108	14 MA	15 VA	16 VIA	17 VIA	He
Li	Be	ATOMIC	VUMBER - 1 SYMBOL - NAME -	H								^s B	°с	⁷ N	* 0	۴	¹⁰ Ne
Na	¹² Mg	3	4	s ve	6 VB	2	8 V18	9 Vii8	10 V118	11	12 18	¹³ Al	¹⁴ Si	¹⁵ P	¹⁶ S	¹⁷ Cl	¹⁸ Ar
ĸ	°Ca	²¹ Sc	Ti	23 V	24 Cr	Mn	Fe	27 Co	28 Ni	29 Cu	³⁰ Zn	Ga	³² Ge	³³ As	Se	Br	³⁶ Kr
Rb	³⁸ Sr	39 Y	^{∗0} Zr	41 Nb	42 Mo	43 Tc	⁴⁴ Ru	45 Rh	* ⁶ Pd	47 Ag	48 Cd	49 In	so Sn	51 Sb	^{s2} Te	53 	54 Xe
^s Cs	56 Ba	57-71 La-Lu	⁷² Hf	73 Ta	74 W	⁷⁵ Re	⁷⁶ Os	" Ir	Pt	⁷⁹ Au	[®] Hg	81 TI	⁸² Pb	e) Bi	⁸⁴ Po	s At	⁸⁶ Rr
Fr	Ra	89-103 Ac-Lr	¹⁰⁴ Rf	¹⁰⁵ Db	¹⁰⁶ Sg	¹⁰⁷ Bh	108 Hs	Mt	Ds	Rg	Cn	¹¹³ Nh	II4 Fl	Мс	116 Lv	Ts	118 Og
LANTH	IANIDES	57 La	M ROYAL	onthly N of the ASTRONOMI	lotices cal societ	ГҮ 2)	1			1	1	1	1	1	/10.1002/m	S And And And Score	20
ACTI	NIDES	⁸⁹ Ac	Advanc	e Access	bublication	2023 Sep	tember 28	s n kiloi	nova	AT 20	17 σ fo			us.nuor.org	10.1093/11	in asi/sidu t.	20
			Kenta ¹ Researe ² Astrone ³ Natione ⁴ Interdis	h Hotoke ch Center fo omical Institu al Institute f sciplinary G	ezaka, ¹ or the Early oute, Tohoku for Fusion S fraduate Sci	Masao Universe, C University Science, 322 hool of Eng	omi Tana Graduate So , Aoba, Sen 2-6 Oroshi-o ineering Sc	aka [©] , ² chool of Sciu dai 980-85 cho, Toki 50 iences, Kyu	Daiji K ence, Unive 78, Japan 19-5292, Jap shu Univer	ato ^{3,4} an crsity of Toky pan sity, Fukuok	d Gedir yo, Bunkyo, xa 816-8580	ninas G Tokyo 113: , Japan	aigalas 0033, Japa	5 in			

 INAF INAF ISTITUTO NAZIONALE Di ASTROFISICA

h H	2 84		Tup Acre	T	he P	Perio	dic 7	Table	e of	Elen	nent	S		https://d	ni ora /10.2	247/1520	2 H	
Li	Be	ATOM	© 2023, The OPEN A	Author(s). Pu	iblished by the	: American As	tronomical Soc	ciety.						naps.//u	noig/10.3	1550	(
Na	¹² Mg	3 108	Cer	Cerium Features in Kilonova Near-infrared Spectra: Implication from a Chemically Peculiar Star Masaomi Tanaka ^{1,2} , Nanae Domoto ¹ , Wako Aoki ^{3,4} , Miho N. Ishigaki ³ , Shinya Wanajo ⁵ , Kenta Hotokezaka ^{6,7} , Kyohei Kawaguchi ^{5,8,9} , Daiji Kato ^{10,11} , Jae-Joon Lee ¹² , Ho-Gyu Lee ^{12,13} , Teruyuki Hirano ^{3,4,14} ,														
к	°Ca	²¹ Sc	Masac															
Rb	[™] Sr	39 Y	Takayu	ki Kotan	i ^{3,4,14} ©,	Masayu	ki Kuzuł	hara ^{3,14} 0	, Jun Ni	shikawa ⁻ toshi, Ye	^{3,4,14} ¹⁰ , 1 1a ^{3,4,14}	Masashi	Omiya ^{3,1}	⁴ ©, Mo	tohide T	amura ^{3,1}	4,15	
Cs	se Ba	57-71 La-Lu	²² Hf	73 Та	⁷⁴ W	⁷⁵ Re	⁷⁶ Os	" Ir	Pt	Au	[∞] Hg	81 TI	⁸² Pb	83 Bi	Po	es At	86 R	
Fr	** Ra	89-103 Ac-Lr	Rf	Db	Sg	Bh	Hs	Mt	Ds	III Rg	¹¹² Cn	^{HI3} Nh	FI	Мс	Lv	Ts	118 O	
LANTH	IANIDES	⁵⁷ La	[®] Ce	^{s9} Pr	⁶⁰ Nd	Pm	Sm	⁶³ Eu	⁶⁴ Gd	55 Tb	[∞] Dy	67 Ho	⁶⁸ Er	[∞] Tm	Yb	Lu]	
ACTIN	NIDES	⁸⁹ Ac	° Th	Pa	92 U	93 Np	Pu	95 Am	[%] Cm	97 Bk	⁹⁸ Cf	99 Es	Fm	Md	102 No	¹⁰³ Lr	1	

INAF ISTITUTO NAZIONALE DI ASTROPISICA Deservatorio Astronomico d'Abruzzo

1 IA	1	22		Т	he P	erio	dic ⁻	Table	e of	Elen	nent	S					18 VIIA
н	2 8A											13 108	14 IVA	15 VA	16 VIA	17 VIA	He
³ Li	Be	ATOMIC	NUMBER - 1 SYMBOL -	H								^s B	° C	'N	8 0	۴	¹⁰ Ne
"Na	¹² Mg	3	4	5	6 108	2	8	9	10 V108	1	12	¹³ Al	¹⁴ Si	15 P	¹⁶ S	¹⁷ Cl	¹⁸ Ar
¹⁹ K	20 Ca	21 Sc	²² Ti	23 V	²⁴ Cr	²⁵ Mn	Fe	27 Co	28 Ni	29 Cu	³⁰ Zn	Ga	³² Ge	³³ As	³⁴ Se	35 Br	³⁶ Kr
³⁷ Rb	[™] Sr	39 Y	⁴⁰ Zr	Nb	42 Mo	43 Tc	[#] Ru	45 Rh	* Pd	47 Ag	[≪] Cd	49 In	^{so} Sn	si Sb	sz Te	53 	⁵⁴ Xe
55 Cs	se Ba	57-71 La-Lu	n Hf	73 Ta	24 W	⁷⁵ Re	⁷⁶ Os	" Ir	Pt	⁷⁹ Au	®Hg	⁸¹ TI	⁸² Pb	⁸³ Bi	⁸⁴ Po	At	RA
⁸⁷ F Ei ht	ur. Phy tps://d	s. J. D loi.org/	(2023) 10.114) 77:120 0/epjd	6 /s10053	3-023-00	0695-5		_			Тне Рну	EUF	ROPE	AN URN/	AL D	Checupda

Regular Article – Atomic Physics

Calculations of multipole transitions in Sn II for kilonova analysis

A. I. Bondarev^{1,2,a} , J. H. Gillanders³, C. Cheung⁴, M. S. Safronova^{4,5}, and S. Fritzsche^{1,2,6}

ACT

Finanziato dall'Unione europea NextGenerationEU

1		22		Т	he P	erio	dic ⁻	Tabl	e of	Elen	nent	S					18 VIIA
H	2 84											13 108	14 MA	15 VA	16 VIA	17 VEA	He
Li	Be	ATOMIC	NUMBER - 1 SYMBOL - NAME -	H								^s B	°с	'N	* 0	F	¹⁰ Ne
¹¹ Na	¹² Mg	1	4	S VB	6 V18	2	8 V10	9 Viili	10 V10		12	¹³ Al	¹⁴ Si	¹⁵ P	¹⁶ S	¹⁷ CI	¹⁸ Ar
* ¹⁹ K	²⁰ Ca	21 Sc	22 Ti	23 V	²⁴ Cr	Mn	Fe	27 Co	28 Ni	29 Cu	³⁰ Zn	Ga	32 Ge	³³ As	[™] Se	35 Br	³⁶ Kr
37 Rb	³⁸ Sr	39 Y	⁴⁰ Zr	Nb	⁴² Mo	43 Tc	[#] Ru	45 Rh	* Pd	47 Ag	[≉] Cd	49 In	^{so} Sn	⁵¹ Sb	^{s2} Te	53 	⁵⁴ Xe
55 Cs	⁵⁶ Ba	57-71 La-Lu	" Hf	za Ta	74 W	75 Re	⁷⁶ Os	" Ir	Pt	⁷⁹ Au	[∞] Hg	⁸¹ TI	e2 Pb	⁸³ Bi	⁸⁴ Po	⁸⁵ At	⁸⁶ Rn
• Fr	Ra	⁸⁹⁻¹⁰³ Ac-Lr	Rf	Db	Sg	107 Bh	108 Hs	Mt	Ds	Rg	Cn	113 Nh	II4 Fl	Мс	Lv	117 Ts	118 Og

A&A 675, A194 (2023) https://doi.org/10.1051/0004-6361/202346421 © The Authors 2023

Astronomy Astrophysics

Discovery of a 760 nm P Cygni line in AT2017gfo: Identification of yttrium in the kilonova photosphere

Albert Sneppen^{1,2} and Darach Watson^{1,2}

1 UA 1	Т			Т	he P	erio	dic 1	Table	ofl	Elem	nent	s					18 VIIA 2
Н	Mor royal ast	thly N of the громоми	otices CAL SOCIET	ſ¥													He
Li	MNRAS 49 Advance /	93, 4143– Access p	4171 (202) ublication	0) 1 2020 F	ebruary 2	26								doi:10.10	93/mnras	/staa485	Ne
Na	A line	e-bin	ned t	reat	ment	tofo	pacit	ties fo	or th	e spe	ctra	and	light	curv	es fr	om	Ar
¹⁹ K	neutr	on st	tar m	erge	rs		F			- ~P			8				³⁶ Kr
Rb	C. J. F	ontes	⁰ ,1*	C. L.	Fryer	,1,2,3	A. L.	Hung	erford	l, ¹ R.	T. Wo	ollaeg	er ¹			_	s4 Xe
SS Cs	and O. ¹ Los Alama ² Physics Da	. Koro os Nationa epartmen	obkin al Laborata t, Universi	I 1 ory, Los A ty of Ariz	Alamos, NI ona, Tucso	M 87545, m, AZ 85	USA 721, USA										⁸⁶ Rn
Fr	³ Physics an	nd Astrono	omy Depar	tment, Ui	niversity o	f New Me	xico, Albu	querque, 1	NM 87131	, USA					51		Og
LANTI	HANIDES	⁵⁷ La	^{ss} Ce	^{s9} Pr	∞Nd	Pm	⁶² Sm	63 Eu	Ğd	[∞] Tb	бу	67 Ho	⁶⁸ Er	°″ Tm	Yb	²¹ Lu]
		89	90	91	92	93	94	95	96	97	98	99	100	101	102	108	1

Maguire, K. C. Chambers, M. E. Huber, T. Krühler, G. Leloudas, M. Magee, L. J. Shingles, K. W. Smith, D. R. Young, J. Tonry, R. Kotak, A. Gal-Yam, J. D. Lyman, D. S. Homan, C. Agliozzo, J. P. Anderson, ... O. Yaron

+ Show authors

Deservatorio Astronomico d'Abruzzo

1 14	1	201		Т	he P	erio	dic 1	Table	e of I	Elen	nent	S					18 VIIA
н	2 8A											13 108	14 MA	15 VA	16 VA	17 VIA	He
³ Li	Be	Be SYMBOL - H											° C	'N	⁸ O	۶F	¹⁰ Ne
"Na	¹² Mg	3 100	4	s VB	6 VB	2 108	a VIIB	9 VII8	10 V108	11	12 18	¹³ Al	¹⁴ Si	¹⁵ P	¹⁶ S	¹⁷ CI	¹⁸ Ar
¹⁹ K	20 Ca	²¹ Sc	22 Ti	23 V	²⁴ Cr	Mn	Fe	27 Co	28 Ni	29 Cu	³⁰ Zn	Ga	³² Ge	³³ As	³⁴ Se	Br	³⁶ Kr
Rb	³⁸ Sr	39 Y	[∞] Zr	Nb	⁴² Mo	43 Tc	[#] Ru	45 Rh	* Pd	47 A.a.	[≉] Cd	49 In	^{so} Sn	sı Sb	^{s2} Te	⁵³	⁵⁴ Xe
SS Cs	se Ba	57-71 La-Lu	" Hf	73 Ta	74 W	⁷⁵ Re	⁷⁶ Os	" Ir	78 P	Au	łg	⁸¹ TI	Pb	⁸³ Bi	⁸⁴ Po	⁸⁵ At	Rn
⁸⁷ Fr	[≋] Ra	89-103 Ac-Lr	¹⁰⁴ Rf	105 Db	Sg	Bh	108 Hs	Mt	Ds	ny ny	Cn	¹¹³ Nh	II4 Fl	Мс	116 Lv	Ts	118 Og
LANTH	IANIDES	57 Lä	^{ss} Ce	⁵⁹ /r	[∞] Nd	Pm	⁶² Sm	63 Eu	Ğd	55 Tb	∞Dy	⁶⁷ Ho	⁶⁸ Er	۳Tm	⁷⁰ Yb	Lu	1
ACTI	NIDES	⁸⁹ Ac	În	Ра	92 U	⁹³ Np	Pu	Am	[∞] Cm	P7 Bk	⁹⁸ Cf	99 Es	Fm	Md	102 No	103 Lr	

INAF ISTITUTO NAZIONALE DI ASTROFISICA Osservatorio Astronomico d'Abruzzo

Without considering the various degree of ionization of each element!

Theoretical approach

- ✓ Relativistic Multi-Configuration
 - Dirac-Hartree-Fock (MCDHF)
- ✓ Breit and Quantum ElectroDynamics (QED)

corrections

Theoretical approach

General Relativistic Atomic Structure Package Based on

- Electron configurations for atomic data
- ✓ Spectroscopic labels
- ✓ Atomic data needed for:
- 1. Wavelengths of emission lines;
- 2. E1 and M1 spontaneous emission rates (transition probabilities).

- ✓ Relativistic Multi-Configuration Dirac-Hartree-Fock (MCDHF)
- ✓ Breit and Quantum ElectroDynamics (QED)

corrections

Theoretical approach

General Relativistic Atomic Structure Package Based on

- Electron configurations for atomic data
- ✓ Spectroscopic labels
- ✓ Atomic data needed for:
- 1. Wavelengths of emission lines;
- 2. E1 and M1 spontaneous emission rates (transition probabilities).

- ✓ Relativistic Multi-Configuration Dirac-Hartree-Fock (MCDHF)
- Breit and Quantum ElectroDynamics (QED) corrections

M. Bezmalinovich PhD Thesis

Opacity estimation

Theoretical approach

General Relativistic Atomic Structure Package Based on

D)

Besides this, we have to consider the thermodynamic conditions of the plasma in which these transitions occur.

Thus, it is of outmost importance to address experimental facilities able to reproduce stellar plasma conditions.

Ion Storage Rings vs. Plasma Traps

The storage ring approach is based on the investigations of a single charge state at a time.

A plasma trap reproduce stellar-like conditions where a Charge State Distribution (CSD) of the ions is established.

Plasmas for Astrophysics Nuclear Decays Observation and Radiation for Archaeometry PANDORA

INFN - Laboratori Nazionali del Sud (Catania)

PANDORA

- 1) Superconducting Magnetic Plasma Trap: the plasma is generated via the electron cyclotron resonance (ECR) mechanism, sustained via microwave, and confined by the magnetic trap;
- HpGe Array: it consists of 14 detectors to measure the γ rays emitted after β-decays;
- 3) Plasma Diagnostics System: it consists of RF, optical and X ray spectrometers allowing direct correlation of β-decay rate to plasma density and temperature

It could "add unique research capability" in Astrophysics and Nuclear Astrophysics in laboratory:

- 1) for the first time, β -decay measurements in plasmas (¹⁷⁶Lu, ¹³⁴Cs, and ⁹⁴Nb);
 - 2) plasma opacity measurements in conditions similar to kilonovae ejecta.

PANDORA and Neutron Stars

The plasma, enriched with a single heavy element, is irradiated with a (white) calibrated source with an emissivity larger than plasma's one. Then, by means of a spectrometer, the spectral characteristics of the chemical elements are derived.

PANDORA and Neutron Stars

PANDORA will have a dense and hot plasma, made of multi-charged ions in a cloud of energetic electrons, which is confined in a so-called minimum-B magnetic profile, and heated by microwave power, according to the electron cyclotron resonance (ECR) mechanism.

□
$$n_e$$
: 10¹⁰ - 10¹³ cm⁻³
□ T_e : few eV

PANDORA plasma parameters fit better the conditions of early-stage kilonova emission, i.e., between $10^{-2} - 1$ days after merger.

This early phase of the signal (blue-kilonova emission) has its peak at optical frequencies, more likely due to the ejecta's light component featuring a low degree of opacity.

PANDORA and Neutron Stars

PANDORA will have a dense and hot plasma, made of multi-charged ions in a cloud of energetic electrons, which is confined in a so-called minimum-B magnetic profile, and heated by microwave power, according to the electron cyclotron resonance (ECR) mechanism.

> □ n_e : 10¹⁰ - 10¹³ cm⁻³ □ T_e : few eV

er the conditions of early-stage kilonova emission,

gnal (Dive-kilonova emission) has its peak at optical due to the ejecta's light component featuring a low degree of

PANDORA and Neutron Stars

Main atomic abundances in the astrophysical environment, according to *r*-process nucleosynthesis, have been determined to constrain relevant elements for inlaboratory measurements.

Light r-process elements dominate for Ye>0.25 (typical value expected for early-days blue kilonovae). <u>Following step</u>: determination of the suitability of plasma species for experiments basing on their contribution to opacity.

PANDORA and Neutron Stars

First phase of PANDORA: considered elements going from selenium to rhodium as eligible for the experimental campaign. Thus, single-species self-emitting plasmas made of Se, Sr, Zr, Nb, Mo, Tc, Ru, and Rh have been considered.

Opacity can differ of several orders of magnitudes:

- ejecta enriched in light r-process elements have relatively low opacity (κ <1 cm g⁻¹), radiating optical light that fades in days;
- heavy r-process elements enlarges the opacity (κ≈10 cm g⁻¹), with redder light curves lasting even for weeks.

Se-Sr-Zr-Nb exhibit larger mean opacity at the temperature condition of earlyepochs kilonova ($<2.10^4$ K).

PANDORA and Neutron Stars

In view of these numerical results, it is useful to define a mean opacity weighted on abundances at a given Y_e . For Y_e 0.25 and T typical of blue-kilonova emission, selenium plasma as one of the most favoured for the experiment.

r [Bohr]

PANDORA and Neutron Stars

of the ROYAL ASTRONOMICAL SOCIETY MNRAS 515, L89-L93 (2022) Advance Access publication 2022 July 29

https://doi.org/10.1093/mnrasl/slac0

Tungsten versus Selenium as a potential source of kilonova nebular emission observed by Spitzer

Kenta Hotokezaka.^{1,2}* Masaomi Tanaka^{9,3,4} Daiji Kato^{5,6} and Gediminas Gaigalas⁷ Research Center for the Early Universe, Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo 113-0033, Japan ²Kavli IPMU (WPI), UTIAS, The University of Tokyo, Kashiwa, Chiba 277-8583, Japan ³Astronomical Institute, Tohoku University, Sendai 980-8578, Japan ⁴Division for the Establishment of Frontier Sciences, Organization for Advanced Studies, Tohoku University, Sendai 980-8577, Japan

National Institute for Fusion Science, 322-6 Oroshi-cho, Toki 509-5292, Japan

Department of Advanced Energy Engineering Science, Kyushu University, Kasuga, Fukuoka 816-8580, Japan

Institute of Theoretical Physics and Astronomy, Vilnius University, Saulétekio Ave. 3, Vilnius, Lithuania

M. Bezmalinovich PhD Thesis

al results, it is useful to eighted on abundances and T typical of blueium plasma as one of experiment.

Recall the state wavefunction $\phi(\mathbf{x}) = \frac{1}{r}$

 $P(n\kappa; r)\chi_{\kappa m}(\theta, \varphi)$ iQ(n\kappa; r)\chi_{-\kappa m}(\theta, \varphi)

Selenium electron configuration [Ar] 3d¹⁰4s²4p⁴

Se ground state

Advertisement!!!

Phd in ASTRONOMY ASTROPHYSICS AND SPACE SCIENCE

SAPIENZA UNIVERSITY OF ROME

Home / ASTRONOMY ASTROPHYSICS AND SPACE SCIENCE / Presentation

PHD COURSE

PRESENTATION

PresentationThe PhD course in Astronomy Astrophysics and Space Science (AASS) -- jointly run by University of Rome "Tor
Vergata", Sapienza University of Rome, National Institute of Astrophysics (Rome OAR, Rome IAPS, Teramo OAAb
offices) and Italian Space Agency (ASI) -- trains internationally competitive researchers in the field of Astrophysics
and Space Sciences, who carry out their research activity in the following reference areas:
- Cosmology and Gravitation
- Extragalactic Astrophysics
- Planetary and Solar Physics
- Space Science Techniques
- Stellar and Galactic Astrophysics

https://phd.uniroma1.it/web/ASTRONOMY-ASTROPHYSICS-AND-SPACE-SCIENCE_nD3486_EN.aspx

sergio.cristallo@inaf.it; diego.vescovi@inaf.it

THAT'S ALL FALKS!!!

