

19th Russbach School on Nuclear Astrophysics

Entering in the new era of multimessenger astrophysics: what we have learned up to now? Sara Cutini **INFN** Perugia

Istituto Nazionale di Fisica Nucleare

17 August 2017, 12:41:04 UT

LIGO

Gravitational-wave strain

GW170817

17 August 2017, 12:41:04 UT

17 August 2017, 12:41:06 UT

→ 17:54:51

GW170817

Credit: LIGO/Virgo/NASA/Leo Singer

GW170817

Combined signal-to-noise ratio of 32.4

The signal comes from "blind spot"

The low signal amplitude observed in Virgo significantly constrained the sky position

LIGO Hanford

.

LIGO Livingston

The more extensive follow-up observation campaign ever.

Earth

Virgo

GW _____

γ-ray

Fermi, INTEGRAL, Astrosat, IPN, Insight-HXMT, Swift, AGILE, CALET, H.E.S.S., HAWC, Konus-Wind

X-ray swit, MAXI/GSC, NUSTAR, Chandra, INTEGRAL

UV Switt, HST

Optical

Swope, DE Cam, DLT 40, REM-ROS2, HST, Las Cumbres, SkyMapper, VISTA, MASTER, Magellan, Subaru, Pan-STARRS 1, HCT, TZAC, LSGT, T17, Gemini-South, NTT, GROND, SOAR, ESO-VLT, KMTNet, ESO-VST, VIRT, SALT, CHILESCOPE, TOROS, BOOTES-5, Zadko, ITelescope Net, AAT, PI of the Sky, AST3-2, ATLAS, Danish Tel, DFN, T80S, EABA

IR

REM-ROS2, VISTA, Gemini-South, 2MASS, Spitzer, NTT, GROND, SOAR, NOT, ESO-VLT, Kanata Telescope, HST

Radio

ATCA, VLA, ASKAP, VLBA, GMRT, MWA, LOFAR, LWA, ALMA, OVRO, E VN, e-MERLIN, MeerKAT, Parkes, SRT, Effeisberg

10-2

What we had understood about GW observables?

Binary inclination using EM

 θ_{JN} = 151 deg

Masses are consistent with the masses of all known neutron stars!

 $m_1 \in (1.36 - 1.89)M_{\odot}$ $m_2 \in (1.00 - 1.36)M_{\odot}$

 $m_1 \in (1.36 - 1.60) M_{\odot}$ $m_2 \in (1.16 - 1.36)M_{\odot}$

Exceptions (NS-BH): mass ratio is high and compactness is high!

In general, when at least one NS is involved in the merger, emission of photons is expected along with GWs.

Artistic representation of the scenario following EM emission components coming from a BNS merger

- The red component denotes the tidal ejecta (equatorial red KN)
- The blue component the hydrodynamic and wind ejecta (polar blue KN)
- The purple component the jet (nonthermal emission)
- The yellow component the matter of the ejecta heated by the jet (cocoon).

Electromagnetic counterpart (1) Kilonova and Nucleosynthesis

The Equatorial tidal ejecta -> site of r-processes: Neutron capture rate much faster than beta decay, special conditions: $T > 10^9$ K, high neutron density > 10^{20} cm⁻³.

- Nucleosynthesis of heavy nuclei
- radioactive decay of heavy elements
- Low value of Y_e (<0.25) and high opacity

Accretion disc wind outflow

- Weak interactions: neutrino absorption, electron/positron capture
- Lower opacity
- Blue optical transient

- Higher electron fraction Y_e (>0.25), no nucleosynthesis of heavier element

capture The two principal processes are: **s-process**: neutron capture timescale is longer than the beta decay timescale **r-process** neutron capture timescale is faster than the beta decay timescale

In the r-process the electron fraction Y_e plays a decisive role! Y_e = Electron fraction = #p/#(p+n)

At high neutrino flux, neutrino-matter interactions Ye increase!

Beyond Ye > 0.25 hardly any heavy elements beyond the second r-process peak (A = 130) are produced. $v_{ejecta} = 0.25c$

 \blacktriangleright Y_e > 0.5: no *r*-process ▶ 0.25 $\leq Y_e < 0.5$: weak *r*-process ► $Y_e \leq 0.25$: strong *r*-process

Production of lathanides dramatically changes photon opacity

647 photometricmeasurements spanning from0.45 to 29.4 day

Light curves are well fit by a spherically symmetric, threecomponent model with an overall ejecta mass of \approx 0.078 M_{\odot} dominated by light r-process material with a v=0.15c

Evidence for a lanthanide-free component with mass and velocity of $\approx 0.020 M_{\odot}$ and \approx 0.27c, respectively (polar dynamical ejecta).

Nuclear heating rates (nuclear reaction network -WinNet, Wintler et al 2013) with overlaid the **bolometric luminosities of Kilonova of GRB** 170817

Total nuclear heating rate —>luminosities divided by an ejecta mass ($1.5 \times 10^{-2} M_{\odot}$).

Heating rate with Ye = 0.5 produces a substantial amount of nickel. The close agreement with Ye \leq 0.3 strongly suggests the presence of substantial amounts of rprocess matter.

kilonova is characterized by rapidly expanding ejecta optically thick early on, with a velocity of about 0.2 times light speed, and reaches a radius of ~ 50 astronomical units in only 1.5 days. As the ejecta expands, broad absorption-like lines appear on the spectral continuum indicating atomic species produced by nucleosynthesis that occurs in the post-merger fast-moving dynamical ejecta and in two slower (0.05 times light speed) wind regions.

Three components to describe the kilonova emission

Comparison of the spectra with a scenario where these three components contribute to the observed spectra:

- Ianthanide-rich dynamical ejecta region with a low electron fraction and a velocity of 0.2c
- two slow (0.05c) wind regions of which one has Ye = 0.25 and mixed (lanthanide-free and lanthanide-rich) composition one has Ye =0.30 and is lanthanide-free

Smartt et al. (2017)

Possibile signature of Cesium and Tellurium

 vertical lines indicate the positions of spectral lines blueshifted by 0.2 c

Cs I and Te I lines that are consistent with the broad features observed in the optical and near infrared spectrum at later time

Time: -1225 days

If the ejecta is composed primarily of heavier r-process material -> the opacity is higher and it resulting in a longer diffusion times and longer duration bolometric light curves.

bands and shift the emission primarily to the infrared.

The higher lanthanide opacities of the heavy r-process materials obscure the optical

The fast rise of the light curves and rapid color evolution are consistent with multiple ejecta components of different lanthanide abundance.

rapid expansion and cooling in 4 days

KECK and Magellan/Swope

While the initial observed peak is consistent with ~0.01 M_{\odot} of r-process material, this under-predicts the luminosity at later times. Instead, the late-time (> 4 day) light curve matches radioactive heating from 0.05±0.02 M_{\odot} of r-process material.

- Between 4.5 and 8.5 days, the temperature asymptotically approaches ~2500K
- and photosphere move inward

• At 2500 K —> combination of open f-shell lanthanide elements rapidly reduced opacity

identification of the neutron-capture element strontium (810 nm feature) X-shooter

This identification of Cesium and Tellurium can be ruled out because neither Cs I nor Te I produce strong lines in a plasma such high temperature

The range of NS-NS merger rate densities of 320-4740 Gpc-3 yr-1 the Milky Way with NS-NS mergers

provided by LIGO/Virgo is remarkably consistent with the range required by Galactic chemical evolution models to explain the Eu abundances in

Electromagnetic counterpart (2) Non - thermal emission

GRB emission and fireball model

1000 Time since BAT trigger (s)

GRB 170817A

- 10² 10⁶ less energetic than other short GRBs

• 100 times closer than typical GRBs observed by Fermi-GBM, z=0.009727 • it is also "subluminous" compared to the population of long/short GRBs

X-ray emission peaks at 9 days after the merger first evidence of off-axis jet sGRB

Using VLA observations (6 GHz) was found radio emission 16 days after the merger

X-ray band with XMM-Newton 135 d after the event. previously observed brightening. Radio-to-X-ray spectral slope not change origin should be geometric

Was found evidence for a flattening of the X-ray light curve with respect to the

Account for the low luminosity

Shallow rise phase as t^{-0.8}

Off-axis jet

$\Gamma_1 > \Gamma_2 > \Gamma_3$ $E_1 > E_2 > E_3$

10² Time after GW170817 [days]

Decaying phase after 160 days since the merger! We cannot distinguish between isotropic blast wave + radial structure and off axis jet + angular structure

VLBI observations was performed 207.4 days after the merger. The apparent source size is constrained to be smaller than 2.5 milliarcseconds at the 90% confidence level. This excludes the isotropic outflow scenario, which would have produced a larger apparent size, indicating that GW170817 produced a structured relativistic jet.

Isotropic emission excluded

The rate of GRBs with luminosity as low as GRB 170817A is consistent with the luminosity function of structured jets!

Number of lower luminosity events increases according to the jet structure

Jet and kilonova interaction - GRB 211211A

GeV excess is inverse Compton emission due to the interaction of a long-lived, low-power jet with an external source of photons.

We discover that the kilonova emission can provide the necessary seed photons for GeV emission in binary neutron star mergers.

GLADEnet: Empowering Galaxy Catalogs for Multimessenger Applications

Possible strategy to increase the number of joint detections! GLADEnet: https://virgo.pg.infn.it/gladenet/catalogs/ Interactively visualize the possibile host galaxies in the GW volume follow-up

Evaluation of completeness parameter —> fundamental ingredient for optical

I'm waiting for another event

Too questions to solve! I need another event..

Let's hope in O4b

Thank you!!

