

The supernova link between the Local Bubble and deepsea radioisotopes

Michael M. Schulreich

The Local Bubble

- Cavity of low-density (n < 0.005 cm⁻³), high-temperature ($T \ge 10^6$ K) plasma surrounded by cold, dusty gas shell
- Harbors the solar system
- Discovered, e.g., via Nal and Call absorption lines and dust extinction mapping \bullet
- **Extension:** ~50–200 pc into Galactic plane; >100 pc perpendicular to it \bullet
- Hot LB plasma responsible for majority of diffuse soft X-ray background, first observed by sounding rockets and later by **ROSAT** and **eROSITA**
- Expanding LB shell probably triggered almost all nearby star formation \bullet
- Widely accepted origin: stellar winds and supernovae from nearby massive stars
- **But:** no OB association ***inside*** present LB!
 - Young star cluster must have passed through today's LB region in the past, providing enough SNe to inflate LB in the process

Recent near-Earth SNe:

- How many?
- When?
- Where?

Suitable sample of stars provided

IMF fitting (Kroupa 2001) rotating stellar evolution models (Ekström+ 2012) stellar tracebacks in a Monte Carlo fashion

Sco-Cen complex populations extracted from *Gaia* EDR3 (Luhman 2022)

Unravelling the supernovae of the Local Bubble

Marginal phase-space PDFs for Sco-Cen populations

Red crosses = phase-space coordinates of massive star just before its explosion (maximum of 6D PDF)

sets entire trajectory of (wind-blowing) SN progenitor

Δ

Test particle simulations

60

10

Sco-Cen complex @ t = -19.54 Myr

- Gray sphere = LB approximated as a very large Weaver+ (1977) wind-blown bubble, neglecting its wind-driven phase
- Mechanical luminosity of SNe: $L_{\rm SN} = \frac{E_{\rm SN}}{\Delta t_{\rm exp}} \approx (4.44 \times 10^{37} \,{\rm erg \, s^{-1}}) \,\left(\frac{E_{\rm SN}}{10^{51} \,{\rm erg}}\right)$ $\left(\frac{\Delta t_{\rm exp}}{0.71\,{\rm Myr}}\right)$ \times
- LB radius evolution law:

$$R = \left(\frac{125}{154 \pi}\right)^{1/5} \left(\frac{L_{\rm SN}}{\rho_0}\right)^{1/5} t_{\rm SN}^{3/5}$$

$$\approx (241 \,\mathrm{pc}) \left(\frac{L_{\rm SN}}{4.44 \times 10^{37} \,\mathrm{erg \, s^{-1}}}\right)^{1/5} \left(\frac{n_{\rm H,0}}{0.7 \,\mathrm{cm^{-3}}}\right)$$

$$\times \left(\frac{t_{\rm SN}}{10.16 \,\mathrm{Myr}}\right)^{3/5}$$

-1/5

Radioisotopic tracers

Isotope	Half-life (Myr)	Decay mode	Nucle p
⁶⁰ Fe	$2.61 \pm 0.04^{1,2}$	β-	s- and

¹² Wang+ (2007); ¹³ Binns+ (2016); ¹⁴ Basunia & Hurst (2016); ¹⁵ Feige+ (2018); ¹⁶ Plüschke+ (2001); ¹⁷ Honda & Imamura (1971); ¹⁸ Korschinek+ (2020); ¹⁹ Nesaraja (2017)

¹Rugel+ (2009); ²Wallner+ (2015); ³Knie+ (1999); ⁴Knie+ (2004); ⁵Fitoussi+ (2008); ⁶Wallner+ (2016); ⁷Wallner+ (2021); ⁸Ludwig+ (2016); ⁹Wallner+ (2020); ¹⁰Koll+ (2019); ¹¹Fimiani+ (2016);

12	,

⁶⁰Fe signatures on Earth ...

⁶⁰Fe signatures on Earth ...

9

... and beyond

Radioisotopic tracers

Isotope	Half-life (Myr)	Decay mode	Nucleosynthesis process	Background	Measurement efforts
⁶⁰ Fe	$2.61 \pm 0.04^{1,2}$	β-	s- and r-process	X	Detection in FeMn crusts ^{3,4,5,6,7} and nodules ⁶ , deep-ocean sediments ^{8,9} , Antarctic snow ¹⁰ , lunar regolith ¹¹ , diffuse Galactic γ-ray emission ¹² , and Galactic cosmic rays ¹³
26 A	0.717 ± 0.024^{14}	β+, electron capture	$^{25}Mg(p,\gamma)$ reaction	SNe Sources	other than SNe Searches in FeMn crusts ¹⁵ Detection in diffuse Galactic γ-ray emission ¹⁶
⁵³ Mn	3.7 ± 0.4^{17}	Electron capture	Explosive Si & O burning	SNe from pr Earth'	Evidence in FeMn crusts ¹⁸
			CCS	Ne Continu produ	uction in IDPs

¹Rugel+ (2009); ²Wallner+ (2015); ³Knie+ (1999); ⁴Knie+ (2004); ⁵Fitoussi+ (2008); ⁶Wallner+ (2016); ⁷Wallner+ (2021); ⁸Ludwig+ (2016); ⁹Wallner+ (2020); ¹⁰Koll+ (2019); ¹¹Fimiani+ (2016);

¹² Wang+ (2007); ¹³ Binns+ (2016); ¹⁴ Basunia & Hurst (2016); ¹⁵ Feige+ (2018); ¹⁶ Plüschke+ (2001); ¹⁷ Honda & Imamura (1971); ¹⁸ Korschinek+ (2020); ¹⁹ Nesaraja (2017)

Signatures of other radioisotopes on Earth

Radioisotopic tracers

Isotope	Half-life (Myr)	Decay mode	Nucleosynthesis process	Backg	round		Measurement efforts
⁶⁰ Fe	$2.61 \pm 0.04^{1,2}$	β-	s- and r-process	stare		Detectio deep-o lunar rego	on in FeMn crusts ^{3,4,5,6,7} and nodules ⁶ ocean sediments ^{8,9} , Antarctic snow ¹⁰ , olith ¹¹ , diffuse Galactic γ-ray emission and Galactic cosmic rays ¹³
26 A I	0.717 ± 0.024^{14}	β+, electron capture	$^{25}Mg(p,\gamma)$ reaction		Negligi sources Cont	other than SNe Detection	Searches in FeMn crusts ¹⁵ on in diffuse Galactic γ-ray emission ¹⁶
⁵³ Mn	3.7 ± 0.4^{17}	Electron capture	Explosive Si & O burning		from pr Earth'	roduction in the s atmosphere	Evidence in FeMn crusts ¹⁸
²⁴⁴ Pu	81.3 ± 0.3 ¹⁹	a-decay: 99.88% Spontaneous fission: 0.12%	r-process	Ne	Continu produ Rece	uous influx from uction in IDPs	Detection in FeMn crusts ⁷
I	1	1	MR S	Ne?	ant	hropogenic roduction	

Measurements of these radioisotopes pose additional constraints on the LB formation scenario, which we further investigated by means of **3D hydrodynamic simulations**

¹Rugel+ (2009); ²Wallner+ (2015); ³Knie+ (1999); ⁴Knie+ (2004); ⁵Fitoussi+ (2008); ⁶Wallner+ (2016); ⁷Wallner+ (2021); ⁸Ludwig+ (2016); ⁹Wallner+ (2020); ¹⁰Koll+ (2019); ¹¹Fimiani+ (2016);

The supernova link between the Local Bubble and deep-sea radioisotopes

12	7

¹² Wang+ (2007); ¹³ Binns+ (2016); ¹⁴ Basunia & Hurst (2016); ¹⁵ Feige+ (2018); ¹⁶ Plüschke+ (2001); ¹⁷ Honda & Imamura (1971); ¹⁸ Korschinek+ (2020); ¹⁹ Nesaraja (2017)

Hydrodynamic simulations

- performed with second-order Godunov-type treebased AMR code RAMSES (Teyssier 2002)
- solve full 3D HD equations on cubic cutout of Galactic disk (800³ pc³) that co-rotates with LSR
- sub-parsec theoretical resolutions: ≤0.78 pc
- stratified background medium in hydrostatic and thermal equilibrium
- external gravitational field from Barros+ (2016)
- CIE cooling for gas with solar metallicity using GRACKLE cooling library (Smith+ 2017)

- collisionless particles:
 - massive stars: move along pre-calculated trajectories, blow (MS-/RSG-[/WR-]) winds, and explode as SNe when their lifetime has run out
 - Sun/Earth: represents "moving detector" for radioisotopic fluxes
- radioisotopes (²⁶Al, ⁵³Mn, ⁶⁰Fe, ²⁴⁴Pu) treated as decaying passive scalars:
 - stellar-wind yields from Ekström+ (2012)
 - SN yields from Limongi & Chieffi (2018)

Hydrodynamic simulations

M. Schulreich et al.

14

Comparison with radioisotopic measurements

- Current model nicely fits measurements before older peak (younger peak generated by SN blast waves & reflected shocks), incl. recent influxes (generated by yet undecayed turbulence in LB cavity)
- Older peak requires inclusion of neighboring superbubble to be crossed by the solar system before entering the LB about 4.6 Myr ago

The Orion-Eridanus superbubble

Ha emission map

Michael Schulreich

Possible geometry of the superbubble

The Orion-Eridanus superbubble

Presumed birthplaces of Sco-Cen subgroups w.r.t. evolving Local Bubble

X (pc)

LB could indeed have triggered star formation near the Sun through its expansion!

- with the formation of the LB through a series of near-Earth SNe over the last ~10 Myr
- Stellar winds impact radioisotope distribution and LB dynamics
- The solar system entered the LB about 4.6 Myr ago
- \bullet primarily from SN explosions and LB shell reflections
- Support for the hypothesis that the LB triggered star formation in the solar vicinity through its expansion
- **neighboring cavity (the Orion-Eridanus superbubble?)**, before settling in the LB

A&A, 680, A39 (2023) https://doi.org/10.1051/0004-6361/202347532 © The Authors 2023

Numerical studies on the link between radioisotopic signatures on Earth and the formation of the Local Bubble

II. Advanced modelling of interstellar ²⁶AI, ⁵³Mn, ⁶⁰Fe, and ²⁴⁴Pu influxes as traces of past supernova activity in the solar neighbourhood

M. M. Schulreich¹, J. Feige^{1,2}, and D. Breitschwerdt¹

• Measurements of ²⁶Al, ⁵³Mn, ⁶⁰Fe, and ²⁴⁴Pu in terrestrial archives – particularly a 2–4 Myr old ⁶⁰Fe peak – are consistent

Recent influx of ⁶⁰Fe in Antarctic snow and deep-sea sediments explained by turbulent radioisotopic transport,

• Second, separate ⁶⁰Fe peak measured at 6–9 Myr ago presumably resulted from the solar system passing through a

