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Mass fraction: Mass of H + He + ‘metals’ = 1

[a/b] = log10(a/b)star – log10(a/b)sun

“Metal” content usually defined according to [Fe/H]

A metal-poor star has [Fe/H] < 0

[Fe/H] is also a proxy for time (age)

Astro Speak…



The r- and s-processes explain the bumps in the cosmic abundance distribution

of heavy elements.

r-process

s-process

Abundances of the Chemical Elements in the Solar System

Scientific Background: The Origin Of Elements

adapted from Cameron (1982)
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neutron-capture processes
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The r- and s-processes explain the bumps in the cosmic abundance distribution

of heavy elements.
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rapid-neutron capture

n-capture rate < β-decay rate 


Nn > 1020 n/cm3
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slow-neutron capture

SLOW 
NEUTRON CAPTURE 

PROCESS
n-capture rate  >> β-decay rate 


Nn ~ 108 n/cm3

Making Heavy Elements by Neutron Capture
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Present-day solar photospheric logarithmic abundances 

Asplund et al., 2021

Origins from Low- and Intermediate-Mass Stars: 
CNO, Iron-Peak, s-Process Elements

Weak component

from Fe to Sr

τ ≈ 0.06 mbarn−1

Massive stars

Main component

from Sr to Pb

τ ≈ 0.3 mbarn−1

Low-mass AGBs

Strong component

Pb

τ ≈ 7.0 mbarn−1

Low-mass, Low-

metallicity AGBs
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and 18O

First-DU

Second-DU in M > ~3M⦿

increase in 4He and 14N

Second-DU

Core He Flash

Third-DU increase in 4He 
and 12C and heavy elements 
(s-process elements)

Hot Bottom Burning (in M 
> ~3M⦿) 
decrease in 12C 
increase in 13C and 14N
7Li, Na, Mg, Al

Third-DU

AGB Nucleosynthesis
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García-Hernández, D. A et al., 2011; 2017

Rb I ZrO

Uttenthaler et al., 2011

AGB Stars as Tracers of AGB Nucleosynthesis…
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Single Post-AGB Stars

Kwok et al., 1980; Reddy et al., 1999; Bakker et al., 1997; Bakker & Lambert 1998; Van Winckel 2003; Van Winckel et al., 2009; Rao 
et al., 2012; Sczerba et al., 2009; and all others…
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Single Post-AGB Stars as Exquisite Tracers of CNO, Fe-peak 
& s-process elements

+ LUMINOSITY (PROGENITOR MASS)
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Carbon and s-process rich stars:

Van Winckel 2003

Single Post-AGB Stars as Exquisite Tracers of CNO, Fe-peak & s-process 
elements
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elements

• Minitial ~ 1 to 1.5 Msun 
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Dell' Agli et al., 2019

Z = 4 ×10−3 

Z = 2 × 10−3

Z = 10−3

Z = 3 × 10−4

Z = 10−4 

Nucleosynthetic Yields from Stellar Models



Fishlock et al., 2014

Nucleosynthetic Yields from Stellar Models
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The revelation of chemical diversities in AGB nucleosynthesis…
Van Winckel 2003; Kamath et al., 2017; 2020; 2022; 2023
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Observed C/O and 12C/13C ratios significantly lower than predictions De 

Smedt et al., 2012; Van Aarle et al., 2014; Kamath et al., 2014; 2015 

convection, mixing, and mass-loss

THE STATE-OF-THE-ART: COMPLEXITIES IN SINGLE STAR AGB NUCLEOSYNTHESIS

A subset of post-AGB stars reflect a lack of carbon production during the AGB phase

Kamath et al.,2018

efficiency of the third dredge-up

Non-uniform s-process production

Van Winckel 2003; Kamath et al.,2022; Kamath et al., 2023

AGB nucleosynthesis

Under-abundance of lead (b)

De Smedt et al., 2014, 2015; Kamath et al., 2021

s-process nucleosynthesis



Complexities in Single Star AGB Nucleosynthesis

• Failed third dredge-up

Lack of carbon production during the AGB phase for stars that are 
predicted to have efficient TDU
Kamath et al., 2017

• Diverse AGB nucleosynthesis

Non-uniform s-process production
Van Winckel 2003; Kamath et al.,2022; Kamath et al., 2023
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s-process rich versus non-enriched:

s-process rich

non s-process enriched

Chemical Diversities Within the Galactic Single Star Sample

AGB Nucleosynthesis is NOT homogenous!



Red: s-process enriched

Blue: non s-process rich

•A chemical dichotomy in the C 
and s-process abundances: 
enriched and non-enriched (in 
disagreement with models!)

•No obvious trends in O and N
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Positions of Galactic Post-AGB Stars in the HR-Diagram

Filled: Quality 1 - Filled, Open: Quality 2 (based on GAIA astrometric data) 

Red circles: s-process enriched Blue squares: non s-process rich
Kamath et al., 2022
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Chemistry of Stars Evolving from AGB to Post-AGB

NON-STANDARD AGB EVOLUTION AND NUCLEOSYNTHESIS 

SCENARIOS



A SIGNATURE OF DEEP MIXING DURING THE RGB?
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No s-process enhancements 

luminosity: 5000−6300 Lsun 

Extremely large surface nitrogen, 

[N/Fe] =  1.1 

Possibility explored: extremely 

deep mixing during the RGB 

ascending

e.g., D’Antona & Ventura 2007



AGB phase with a mass in the 1 −  1.1 M⊙	range

Assuming a ∼ 0.1 M⊙	mass loss during the RGB, this corresponds to age 4 −  5 Gyr Star 

must have experienced one or 2 TDU events before entering the post-AGB phase (observed 

value [N/Fe] = 1.1, [C/Fe] = 0.3 + lack of s-process enhancement)

A SIGNATURE OF DEEP MIXING DURING THE RGB?

HD161796



STARS THAT FAILED THE THIRD DREDGE-UP
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STARS THAT FAILED THE THIRD DREDGE-UP
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STARS THAT FAILED THE THIRD DREDGE-UP
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A fast loss of the external 

envelope halted further growth 

of the core mass and increase 

in the surface carbon and 

prevented s- process 

enrichment



SAO239853: uncertain luminosity, given in the 13000 −  48500 L⊙	range.

The 3 Msun model star evolves to surface C and N abundances consistent with 

those observed during the first part of the AGB phase, after the star experienced a 

couple of TDU events

We artificially removed the envelope of the stars from this point on

STARS THAT FAILED THE THIRD DREDGE-UP



Post-AGB stars are exquisite tools to reconstruct the evolution of 

the stars through the post-MS phases.

∼ 40% of the single post-AGB stars in the sample descend from 1 − 3 M⊙	

progenitors

5 sources are the progeny of low-mass stars, that started the AGB phase with mass below 

∼ 1 M⊙	

The three brightest stars, whose surface chemical composition shows up the signature 

of proton-capture processing, are identified as the youngest stars in the sample, 

descending from 3 − 4 M⊙	progenitors that experienced both third dredge-up and hot 

bottom burning

A few low luminosity sources are tentatively identified as the progeny of low- mass (∼ 

0.5−0.7 M⊙), post core helium burning stars, which after a short expansion phase lost the 

entire envelope and failed to reach the AGB

Surface carbon + luminosity -> best indicator of the past history and nature of their 

progenitors



Under-abundance of lead (Pb)
De Smedt et al., 2014, 2015; Kamath et al., 2021 
s-process nucleosynthesis

Complexities in Single Star AGB Nucleosynthesis



LEAD (Pb): A TRACER OF S-PROCESS AND I-PROCESS IN AGB STARS 

Strong component

Pb

τ ≈ 7.0 mbarn−1

Low-mass, Low-

metallicity AGBs



LEAD (PB): A TRACER OF S-PROCESS AND I-PROCESS IN AGB STARS 

De Smedt et al., 2016
Kamath & Van Winckel 2021



LEAD (PB): A TRACER OF S-PROCESS AND I-PROCESS IN AGB STARS 

De Smedt et al., 2016

Discrepancy between the observed and predicted Pb over-

abundances in single, low-metallicity ([Fe/H]<– 0.7 dex) post-

AGBs

Kamath & Van Winckel 2021



LEAD (PB): A TRACER OF S-PROCESS AND I-PROCESS IN AGB STARS 
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The Effect of Binarity on Element Production
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The Effect of Binarity:
AGB Star



The Effect of Binarity:
AGB Star

RocheLobe Filling on the Giant Branches



The Effect of Binarity:
AGB Star

Formation of a circumbinary disc

RocheLobe Filling on the Giant Branches



The Effect of Binarity:
AGB Star

Formation of a circumbinary disc

RocheLobe Filling on the Giant Branches

post-RGBs
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VLTI/ESO



Kluska et al., 2018

H-band reconstruction PIONIER/VLTI

VLTI/ESO



Kluska et al., 2018

H-band reconstruction PIONIER/VLTI

VLTI/ESO



Kluska et al., 2018

H-band reconstruction PIONIER/VLTI

Imaging and Polarimetry

K band VLT/SPHERE/IRDIS

Andrych et al., 2023

VLTI/ESO



Kluska et al., 2018

H-band reconstruction PIONIER/VLTI

Imaging and Polarimetry

K band VLT/SPHERE/IRDIS

Andrych et al., 2023

VLTI/ESO

SPHERE/VLT/ESO



The Post-AGB Binary System
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The Post-AGB Binary System



The Post-AGB Binary System



Spectroscopic binaries - time resolved spectroscopy 

Van Winckel et al., 2009, Oomen et al., 2019



Kluska et al., 2022; Kamath et al., 2014, 2015, 2022



• NearIR excess with a broad onset: hot dust 
component is indicative of Keplerian disc

Kluska et al., 2022; Kamath et al., 2014, 2015, 2022



• NearIR excess with a broad onset: hot dust 
component is indicative of Keplerian disc

• Discs are fat 
• L(IR) is large fraction of L(star) and the disc evolves…
• Long wavelength spectral index: large grains

Kluska et al., 2022; Kamath et al., 2014, 2015, 2022



Photospheric Chemical Depletion in post-AGB binaries

The Effect of Binarity:

Kamath & Van Winckel 2019; Oomen et al., 2021; Mohorian et al., 2024;  Menon et al., 2024



Photospheric Chemical Depletion in post-AGB binaries

• [C/Fe]>0
• Depletion of refractory elements
• Refractory elements scale with Fe

Feedback from disc => 
Loss of nucleosynthetic history

The Effect of Binarity:

Kamath & Van Winckel 2019; Oomen et al., 2021; Mohorian et al., 2024;  Menon et al., 2024



Photospheric Chemical Depletion in post-AGB binaries

• [C/Fe]>0
• Depletion of refractory elements
• Refractory elements scale with Fe

Feedback from disc => 
Loss of nucleosynthetic history

10-micron silicate feature

IR spectra are very rich and strongly 

crystalline

The Effect of Binarity:

Kamath & Van Winckel 2019; Oomen et al., 2021; Mohorian et al., 2024;  Menon et al., 2024



Photospheric Chemical Depletion in post-AGB binaries
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Depletion is efficient over a wide 

range of luminosities AGB/RGB!

Van Winckel et al., 2009; Oomen et al., 2019; Kamath & Van Winckel 2019

The Effect of Binarity:



A second chance for planet formation!?





Kluska et al., 2022

• Most discs (Full discs) start at sublimation temperature
• Transition discs (10%) start at larger radii



Gas-Dust Separation and Dust Trapping 

• Another similarity with YSO:

• Depletion in YSO is thought to be by 
dust trapping by planet formation

• Dust is trapped, clean gas can be 
accreted

• Depletion is correlated with SED 
shape (transition discs in Post-AGB 
stars are more depleted)

• Planet-Disc interaction also in post-
AGB binaries?

Britain et al. 2023; Kluska et all 2022



INSPIRING: INterferometric Survey of Post-agb bInaries with their 
RING an imaging VLTI Large Programme

Main goals:
•Structure of the inner rim vs. binary phase
•Circum-secondary accretion

Methodology:
•Image reconstruction
•Geometrical modelling
•Radiative transfer modelling Kluska et al., 2020, 2021, 2022

250h with PIONIER and GRAVITY  -  11 targets

PI: Kluska, CI: Van Winckel, Kamath, …





•  Measuring the morphology and 
properties of observed planet-
forming disks surrounding 
evolved binary stars

• Investigating the formation and 
evolution of second-generation 
proto-planetary disks

• Building a theoretical model for 
second-generation planet 
formation

• Establishing the nexus between 
planet formation in young and 
evolved systems



Evolved Stars’ Metamorphosis: a Comprehensive Analysis of
The AGB to PN Transition



Evolved Stars’ Metamorphosis: a Comprehensive Analysis of
The AGB to PN Transition
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Mohorian et al., 2024; in-prep

Chemical Depletion in 
Evolved Stars with Planet 

Forming Disks! 



Intrinsically s-Process Enhanced Evolved Binaries

Menon et al., 2024



post-AGB circumbinary discs: near & mid-IR interferometry 

RT models of protoplanetary discs adapted to 
central luminous source fit very well.



Detection of JETS from Dynamic Spectra 

Bollen et al., 2019, 2020, 2022



Time-resolved spectroscopy:
- spatio-kinematic (geometric 
modelling)
- RT (constrains are the Balmer lines)

●Jet opening angle
●Jet tilt
●Angular Velocity structure
●Density structure
●Binary (radius components, orbit)





•Wavelength Coverage: 380nm to 900nm

•C I lines at 5380 Å(left panel) and 6587 Å(right panel) 

•High excitation oxygen multiplet at 6156 Å and/or the forbidden oxygen lines at 6300 and 6363 Å.

•N I lines at 7423.64 Å, 8223.128 Å, 8655.878 Å and 8728.91 Å. 

•Ba II lines (e.g., at 4554.03 Å and at 6496.89 Å)

•Pb I line at 4057.807 Å; Pb II line at 5608.853 Å 

•Zn I line at 4810.540 Å 



LMC



LMC
Closing Comments and Open Questions…



LMC

AGB nucleosynthesis is not homogenous (even within a mass and 
metallicity range)

Not all AGB stars are producers of C and s-process elements. 

How does this affect Galactic chemical enrichment models?

Closing Comments and Open Questions…



Scientific Background: Post-AGB Stars as Tracers


