

COSMC ALCHENTY

Elusive Nature of Post-Asymptotic Giant Branch Chemical Distribution

Collaborators: Hans Van Winckle, Paolo Ventura, Flavia Dell'Agli, Anibal Garcia Hernandez Amanda Karakas, Orsola De Marco, Mark Wardle

19th Russbach School on Nuclear Astrophysics Mar 3 – 9, 2024, Russbach Parish Center

Dr Devika Kamath

1. Evolved stars as tracers for AGB nucleosynthesis

Optical spectra - UVES/VLT

(Bakker et al., 1997)

2. Investigating the second-generation proto-planetary disks

Hillen et al., 2016

H-band reconstruction PIONIER/VLTI

Ertel, Kamath, et al., 2018

3. Chromospheric activity in stars

Maksym Mohorian

Meghna Menon

Silvia Tosi

Zara Osborne

Kateryna Andrych

Toon de Prins

Kayla Martin

Deepak Chahal

- * Mass fraction: Mass of H + He + 'metals' = 1
- $\star [a/b] = \log_{10}(a/b)_{star} \log_{10}(a/b)_{sun}$
- ★ "Metal" content usually defined according to [Fe/H]
- ★ A metal-poor star has [Fe/H] < 0
- \star [Fe/H] is also a proxy for time (age)

Astro Speak...

Scientific Background: The Origin Of Elements

Abundances of the Chemical Elements in the Solar System

adapted from Cameron (1982)

Scientific Background: The Origin Of Elements

Abundances of the Chemical Elements in the Solar System

adapted from Cameron (1982)

seed Fe

neutrons

neutrons

neutrons

radioactive n-rich unstable isotope

radioactive n-rich unstable isotope

isotope

 $\begin{array}{c} & & & \beta \text{-decay} \\ \hline & & & n \rightarrow p \end{array} \\ \text{radioactive} \\ \text{n-rich} \end{array}$

unstable

isotope

Origins from Low- and Intermediate-Mass Stars: CNO, Iron-Peak, *s*-Process Elements

Asplund et al., 2021

Weak component from Fe to Sr $\tau \approx 0.06$ mbarn-1 Massive stars

Origins from Low- and Intermediate-Mass Stars: CNO, Iron-Peak, *s*-Process Elements

Asplund et al., 2021

Weak componentfrom Fe to Sr $\tau \approx 0.06$ mbarn-1Massive starsMain componentfrom Sr to Pb $\tau \approx 0.3$ mbarn-1Low-mass AGBs

Origins from Low- and Intermediate-Mass Stars: CNO, Iron-Peak, *s*-Process Elements

Asplund et al., 2021

Weak component from Fe to Sr $\tau \approx 0.06 \text{ mbarn} - 1$ Massive stars Main component from Sr to Pb $\tau \approx 0.3$ mbarn-1 Low-mass AGBs Strong component Pb $\tau \approx 7.0 \text{ mbarn} - 1$ Low-mass, Lowmetallicity AGBs

N, Li - INTERMEDIATE MASS STARS!

Low- and Intermediate-Mass Single Star Evolution

Luminosity is the brightness of stars compared to the brightness of our Sun as seen from the same distance from the observer.

Low- and Intermediate-Mass Single Star Evolution

Luminosity is the brightness of stars compared to the brightness of our Sun as seen from the same distance from the observer.

First-DU increase in 4He, 13C, 14N, 17O decrease in 12C, 16O and 180

First-DU increase in 4He, 13C, 14N, 17O decrease in 12C, 16O and 18O

First-DU increase in 4He, 13C, 14N, 17O decrease in 12C, 16O and 180

Second-DU in $M > \sim 3M_{\odot}$ increase in 4He and 14N

First-DU increase in 4He, 13C, 14N, 17O decrease in 12C, 16O and 18O

Second-DU in M > $\sim 3M_{\odot}$ increase in 4He and 14N

Third-DU increase in 4He and 12C and heavy elements (s-process elements)

Hot Bottom Burning (in M > ~3M_o) decrease in 12C increase in 13C and 14N 7Li, Na, Mg, Al

García-Hernández, D. A et al., 2011; 2017

Introducing: Post-AGB Stars!

Introducing: Post-AGB Stars!

Introducing: Post-AGB Stars!

Kwok et al., 1980; Reddy et al., 1999; Bakker et al., 1997; Bakker & Lambert 1998; Van Winckel 2003; Van Winckel et al., 2009; Rao et al., 2012; Sczerba et al., 2009; and all others...

Kwok et al., 1980; Reddy et al., 1999; Bakker et al., 1997; Bakker & Lambert 1998; Van Winckel 2003; Van Winckel et al., 2009; Rao et al., 2012; Sczerba et al., 2009; and all others...

Kwok et al., 1980; Reddy et al., 1999; Bakker et al., 1997; Bakker & Lambert 1998; Van Winckel 2003; Van Winckel et al., 2009; Rao et al., 2012; Sczerba et al., 2009; and all others...

Kwok et al., 1980; Reddy et al., 1999; Bakker et al., 1997; Bakker & Lambert 1998; Van Winckel 2003; Van Winckel et al., 2009; Rao et al., 2012; Sczerba et al., 2009; and all others...

Kwok et al., 1980; Reddy et al., 1999; Bakker et al., 1997; Bakker & Lambert 1998; Van Winckel 2003; Van Winckel et al., 2009; Rao et al., 2012; Sczerba et al., 2009; and all others...

Single Post-AGB Stars as Exquisite Tracers of CNO, Fe-peak & s-process elements

+ LUMINOSITY (PROGENITOR MASS)

MILKY WAY LMC SMC

Galaxy: Van Winckel 2003; Szczerba et al., 2007; Kamath et al., 2022; Kluska et al., 2022 LMC/SMC: Van Aarle et al., 2011; Kamath et al., 2014; 2015

• Initial Sample: Combination of UV, Optical and IR Photometry

• Candidate List: Low-Resolution Spectroscopic Analyses

• Final Catalogue: High-resolution Spectroscopic Analyses

Galaxy: Van Winckel 2003; Szczerba et al., 2007; Kamath et al., 2022; Kluska et al., 2022 LMC/SMC: Van Aarle et al., 2011; Kamath et al., 2014; 2015

• Initial Sample: Combination of UV, Optical and IR Photometry

• Candidate List: Low-Resolution Spectroscopic Analyses

• Final Catalogue: High-resolution Spectroscopic Analyses

Galaxy: Van Winckel 2003; Szczerba et al., 2007; Kamath et al., 2022; Kluska et al., 2022 LMC/SMC: Van Aarle et al., 2011; Kamath et al., 2014; 2015

 Initial Sample: Combination of UV, **Optical and IR Photometry** • Candidate List: Low-Resolution **Spectroscopic Analyses** • Final Catalogue: High-resolution **Spectroscopic Analyses** Current Sample: Galaxy: 300 candidates LMC: 35 post-AGBs; 120 post-RGBs SMC: 20 post-AGBs; 30 post-RGBs

Galaxy: Van Winckel 2003; Szczerba et al., 2007; Kamath et al., 2022; Kluska et al., 2022 LMC/SMC: Van Aarle et al., 2011; Kamath et al., 2014; 2015

• Initial Sample: Combination of UV, Optical and IR Photometry

• Candidate List: Low-Resolution Spectroscopic Analyses

• Final Catalogue: High-resolution Spectroscopic Analyses

Galaxy: Van Winckel 2003; Szczerba et al., 2007; Kamath et al., 2022; Kluska et al., 2022 LMC/SMC: Van Aarle et al., 2011; Kamath et al., 2014; 2015

- Initial Sample: Combination of UV, Optical and IR Photometry
- Candidate List: Low-Resolution Spectroscopic Analyses
- Final Catalogue: High-resolution Spectroscopic Analyses

<u>Current Sample:</u> Galaxy: 300 candidates LMC: 35 post-AGBs; 120 post-RGBs SMC: 20 post-AGBs; 30 post-RGBs

Single Post-AGB Stars as Exquisite Tracers of CNO, Fe-peak & s-process elements

Carbon and *s*-process rich stars:

De Smedt et al., 2012, 2015

- Minitial ~ 1 to 1.5 Msun
- [Fe/H] = -1.0 to -1.5
- Z ~ 0.001
- T_{eff} ~6000 K
- Log g ~1 to 1.5 dex

Single Post-AGB Stars as Exquisite Tracers of CNO, Fe-peak & s-process elements

Carbon and *s*-process rich stars:

De Smedt et al., 2012, 2015

- Minitial ~ 1 to 1.5 Msun
- [Fe/H] = -1.0 to -1.5
- Z ~ 0.001
- T_{eff} ~6000 K
- Log g ~1 to 1.5 dex

Single Post-AGB Stars as Exquisite Tracers of CNO, Fe-peak & s-process elements

Carbon and *s*-process rich stars:

De Smedt et al., 2012, 2015

- Minitial ~ 1 to 1.5 Msun
- [Fe/H] = -1.0 to -1.5
- Z ~ 0.001
- T_{eff} ~6000 K
- Log g ~1 to 1.5 dex

Nucleosynthetic Yields from Stellar Models

$$Z = 2 \times 10^{-3}$$

 $Z = 10^{-3}$
 $Z = 3 \times 10^{-4}$
 $Z = 10^{-4}$

Dell' Agli et al., 2019

Nucleosynthetic Yields from Stellar Models

$$ls = Y, Sr, Zr, Rb$$

$$h_{c} - Ra I a Nd$$

Fishlock et al., 2014

The revelation of chemical diversities in AGB nucleosynthesis...

Van Winckel 2003; Kamath et al., 2017; 2020; 2022; 2023

A subset of post-AGB stars reflect a lack of carbon production during the AGB phase *Kamath et al.,2018* efficiency of the third dredge-up

A subset of post-AGB stars reflect a lack of carbon production during the AGB phase *Kamath et al.,2018* efficiency of the third dredge-up

Non-uniform s-process production Van Winckel 2003; Kamath et al.,2022; Kamath et al., 2023 AGB nucleosynthesis

A subset of post-AGB stars reflect a lack of carbon production during the AGB phase Kamath et al.,2018 efficiency of the third dredge-up

Non-uniform *s***-process production** Van Winckel 2003; Kamath et al., 2022; Kamath et al., 2023 **AGB nucleosynthesis**

Under-abundance of lead (b) De Smedt et al., 2014, 2015; Kamath et al., 2021 s-process nucleosynthesis

A subset of post-AGB stars reflect a lack of carbon production during the AGB phase *Kamath et al.,2018* efficiency of the third dredge-up

Non-uniform s-process production Van Winckel 2003; Kamath et al.,2022; Kamath et al., 2023 **AGB nucleosynthesis**

Under-abundance of lead (b) De Smedt et al., 2014, 2015; Kamath et al., 2021 *s*-process nucleosynthesis

Observed C/O and 12C/13C ratios significantly lower than predictions *De Smedt et al.*, 2012; *Van Aarle et al.*, 2014; *Kamath et al.*, 2014; 2015 **convection, mixing, and mass-loss**

Complexities in Single Star AGB Nucleosynthesis

• Failed third dredge-up Lack of carbon production duris predicted to have efficient TDU Kamath et al., 2017

Diverse AGB nucleosynthesis
 Non-uniform s-process production
 Van Winckel 2003; Kamath et al., 2022; Kamath et al., 2023

Lack of carbon production during the AGB phase for stars that are

Chemical Diversities Within the Galactic Single Star Sample

Chemical Diversities Within the Galactic Single Star Sample

Chemical Diversities Within the Galactic Single Star Sample

s-process rich versus non-enriched:

s-process rich non s-process enriched

Chemical Diversities Within the Galactic Single Star Sample *s*-process rich versus non-enriched:

s-process rich non s-process enriched

AGB Nucleosynthesis is NOT homogenous!

Red: s-process enriched Blue: non s-process rich

 A chemical dichotomy in the C and s-process abundances: enriched and non-enriched (in disagreement with models!)

•No obvious trends in O and N

• Parallaxes from Gaia EDR3

• Parallaxes from Gaia EDR3

• Parallaxes from Gaia EDR3

Geometric distances from Bailer Jones et al., 2021

• Parallaxes from Gaia EDR3

Geometric distances from Bailer Jones et al., 2021

- Parallaxes from Gaia EDR3
- Geometric distances from Bailer
 Jones et al., 2021
- SED Fitting: E(B-V)

- Parallaxes from Gaia EDR3
- Geometric distances from Bailer
 Jones et al., 2021
- SED Fitting: E(B-V)

- Parallaxes from Gaia EDR3
- Geometric distances from Bailer
 Jones et al., 2021
- SED Fitting: E(B-V)
- Luminosity

- Parallaxes from Gaia EDR3
- Geometric distances from Bailer
 Jones et al., 2021
- SED Fitting: E(B-V)
 ↓
 Luminosity

Positions of Galactic Post-AGB Stars in the HR-Diagram

Filled: Quality 1 - Filled, Open: Quality 2 (based on GAIA astrometric data) Red circles: s-process enriched Blue squares: non s-process rich

Kamath et al., 2022

Case 1: Progenitor mass below ~1 Msun (FDU)

- Few thermal pulses before envelope is lost
- Evolve as M-stars
- Little to no C and s-process Some N (~0.5 dex) from FDU

Case 1: Progenitor mass below ~1 Msun (FDU)

- Few thermal pulses before envelope is lost
- Evolve as M-stars
- Little to no C and s-process Some N (~0.5 dex) from FDU

Case 1: Progenitor mass below ~1 Msun (FDU)

- Few thermal pulses before envelope is lost
- Evolve as M-stars
- Little to no C and s-process Some N (~0.5 dex) from FDU

Case 2: Progenitor mass of ~1 - 3 Msun (TDU)

- Series of thermal pulses Evolve as C-stars Significant C and *s*-process
- Some N (from FDU), mild O-enrichment

Case 1: Progenitor mass below ~1 Msun (FDU)

- Few thermal pulses before envelope is lost
- Evolve as M-stars
- Little to no C and s-process Some N (~0.5 dex) from FDU

Case 2: Progenitor mass of ~1 - 3 Msun (TDU)

- Series of thermal pulses Evolve as C-stars Significant C and *s*-process
- Some N (from FDU), mild O-enrichment

Case 1: Progenitor mass below ~1 Msun (FDU)

- Few thermal pulses before envelope is lost
- Evolve as M-stars
- Little to no C and s-process Some N (~0.5 dex) from FDU

Case 2: Progenitor mass of ~1 - 3 Msun (TDU)

- Series of thermal pulses Evolve as C-stars Significant C and *s*-process
- Some N (from FDU), mild O-enrichment

Case 3: Progenitor mass of ~3 - 4 Msun (TDU + HBB)

- Experience both TDU and HBB Enhanced in C and *s*-process.
- N is ~a factor of 10 higher than initial

Case 1: Progenitor mass below ~1 Msun (FDU)

- Few thermal pulses before envelope is lost
- Evolve as M-stars
- Little to no C and s-process Some N (~0.5 dex) from FDU

Case 2: Progenitor mass of ~1 - 3 Msun (TDU)

- Series of thermal pulses Evolve as C-stars Significant C and *s*-process
- Some N (from FDU), mild O-enrichment

Case 3: Progenitor mass of ~3 - 4 Msun (TDU + HBB)

- Experience both TDU and HBB Enhanced in C and *s*-process.
- N is ~a factor of 10 higher than initial

Case 1: Progenitor mass below ~1 Msun (FDU)

- Few thermal pulses before envelope is lost
- Evolve as M-stars
- Little to no C and s-process Some N (~0.5 dex) from FDU

Case 2: Progenitor mass of ~1 - 3 Msun (TDU)

- Series of thermal pulses Evolve as C-stars Significant C and *s*-process
- Some N (from FDU), mild O-enrichment

Case 3: Progenitor mass of ~3 - 4 Msun (TDU + HBB)

- Experience both TDU and HBB Enhanced in C and *s*-process.
- N is ~a factor of 10 higher than initial

Case 4: Progenitor mass of > 4 Msun (HBB)

- Dominated by HBB
- N enhancement, neither C nor *s*-process

Case 1: Progenitor mass below ~1 Msun (FDU)

- Few thermal pulses before envelope is lost
- Evolve as M-stars
- Little to no C and s-process Some N (~0.5 dex) from FDU

Case 2: Progenitor mass of ~1 - 3 Msun (TDU)

- Series of thermal pulses Evolve as C-stars Significant C and *s*-process
- Some N (from FDU), mild O-enrichment

Case 3: Progenitor mass of ~3 - 4 Msun (TDU + HBB) • Experience both TDU and HBB Enhanced in C and *s*-process.

• N is ~a factor of 10 higher than initial

Case 4: Progenitor mass of > 4 Msun (HBB)

- Dominated by HBB
- N enhancement, neither C nor *s*-process

Case 1: Progenitor mass below ~1 Msun (FDU)

- Few thermal pulses before envelope is lost
- Evolve as M-stars
- Little to no C and s-process Some N (~0.5 dex) from FDU

Case 2: Progenitor mass of ~1 - 3 Msun (TDU)

- Series of thermal pulses Evolve as C-stars Significant C and *s*-process
- Some N (from FDU), mild O-enrichment

Case 3: Progenitor mass of ~3 - 4 Msun (TDU + HBB) • Experience both TDU and HBB Enhanced in C and *s*-process.

• N is ~a factor of 10 higher than initial

Case 4: Progenitor mass of > 4 Msun (HBB)

- Dominated by HBB
- N enhancement, neither C nor *s*-process

Index	Object	T_{eff}	$\rm L/L_{\odot}$	[C/Fe]	[N/Fe]	[O/Fe]	Flag	M_{init}	chemistry
		s-pr	ocess en	iched stars					
1	IRAS Z02229+6208	5952 ± 250	12959	0.78 ± 0.15	1.19 ± 0.15		Q2	$3-3.5~{\rm M}_{\odot}$	TDU+HBB
15	IRAS 20000+3239	5478 ± 250	14342	1.7 ± 0.2	2.1 ± 0.2		Q2	$3-3.5~{\rm M}_{\odot}$	TDU+HBB

★ Case 3: TDU + HBB ★ Progenitor mass of ~3 - 4 Msun

- ★ Experience both TDU and HBB
- \star Enhanced in C and *s*-process.
- ★ N is ~a factor of 10 higher than initial

★ Case 3: TDU + HBB ★ Progenitor mass of ~3 - 4 Msun

- ★ Experience both TDU and HBB
- Enhanced in C and *s*-process. RY
- \star N is ~a factor of 10 higher than initial

★ Case 4: HBB

★ Case 4: HBB

★ Progenitor mass of > 4 Msun

- ★ Dominated by HBB
- \star N enhancement, neither C nor *s*-process

★ Case 4: HBB

★ Progenitor mass of > 4 Msun

- ★ Dominated by HBB
- ★ N enhancement, neither C nor *s*-process

A SIGNATURE OF DEEP MIXING DURING THE RGB?

- \star No *s*-process enhancements
- ★ luminosity: 5000–6300 Lsun
- ★ Extremely large surface nitrogen,
 [N/Fe] = 1.1
- * Possibility explored: extremely deep mixing during the RGB ascending
- ★ e.g., D'Antona & Ventura 2007

Flag

Q1

 M_{init}

 $1-1.2~{\rm M}_{\odot}$

chemistry

FDU

[O/Fe]

 0.4 ± 0.2

[N/Fe]

 1.1 ± 0.2

A SIGNATURE OF DEEP MIXING DURING THE RGB?

★ AGB phase with a mass in the 1 – 1.1 M⊙ range
 ★ Assuming a ~ 0.1 M⊙ mass loss during the RGB, this corresponds to age 4 – 5 Gyr Star
 ★ must have experienced one or 2 TDU events before entering the post-AGB phase (observed value [N/Fe] = 1.1, [C/Fe] = 0.3 + lack of s-process enhancement)

21	SAO 239853	7452 ± 250	23490	0.4
23	HD 112374	6393 ± 250	10777	0.

3.65

 A fast loss of the external envelope halted further growth of the core mass and increase in the surface carbon and prevented *s*- process enrichment

/Fe]	[N/Fe]	[O/Fe]	Flag	M_{init}	chemistry
± 0.15	0.6 ± 0.2	0.8 ± 0.2	Q2	$\sim 3 { m M_{\odot}}$	TDU
± 0.2	0.5 ± 0.2	0.8 ± 0.2	Q1	$2.5-3~{ m M}_{\odot}$	TDU

★ SAO239853: uncertain luminosity, given in the 13000 – 48500 L⊙ range.

model star evolves to surface C and N abundances consistent with The 3 Msun those observed during the first part of the AGB phase, after the star experienced a couple of TDU events

* We artificially removed the envelope of the stars from this point on
Post-AGB stars are exquisite tools to reconstruct the evolution of the stars through the post-MS phases.

- $^{\circ}$ ~ 40% of the single post-AGB stars in the sample descend from 1 3 M $_{\odot}$ progenitors
- ~1 M⊙
- of proton-capture processing, are identified as the youngest stars in the sample, bottom burning
- entire envelope and failed to reach the AGB
- progenitors

• 5 sources are the progeny of low-mass stars, that started the AGB phase with mass below

• The three brightest stars, whose surface chemical composition shows up the signature

descending from 3 −4 M_☉ progenitors that experienced both third dredge-up and hot

• A few low luminosity sources are tentatively identified as the progeny of low- mass (~ $0.5-0.7 \text{ M}_{\odot}$, post core helium burning stars, which after a short expansion phase lost the

• Surface carbon + luminosity -> best indicator of the past history and nature of their

Complexities in Single Star AGB Nucleosynthesis

Under-abundance of lead (Pb)
De Smedt et al., 2014, 2015; Kamath et al., 2021
s-process nucleosynthesis

LEAD (Pb): A TRACER OF S-PROCESS AND I-PROCESS IN AGB STARS

Strong component

Pb

 $\tau \approx 7.0 \text{ mbarn} - 1$

Low-mass, Lowmetallicity AGBs

LEAD (PB): A TRACER OF S-PROCESS AND I-PROCESS IN AGB STARS

De Smedt et al., 2016

Kamath & Van Winckel 2021

LEAD (PB): A TRACER OF S-PROCESS AND I-PROCESS IN AGB STARS

De Smedt et al., 2016

Discrepancy between the observed and predicted Pb overabundances in single, low-metallicity ([Fe/H]<- 0.7 dex) post-AGBs

Kamath & Van Winckel 2021

LEAD (PB): A TRACER OF S-PROCESS AND I-PROCESS IN AGB STARS

De Smedt et al., 2016

Discrepancy between the observed and predicted Pb overabundances in single, low-metallicity ([Fe/H]<- 0.7 dex) post-AGBs

Kamath & Van Winckel 2021

The Effect of Binarity on Element Production

Br eaking Symmetry

tidal interaction

Roche-lobe overflow

Br eaking Symmetry

- stars in binary systems can interact in various ways:

 - wind accretion & tidally enhanced winds
 - common envelope evolution

Kluska et al., 2018

Kluska et al., 2018

0

-10

H-band reconstruction PIONIER/VLTI

Andrych et al., 2023

SPHERE/VLT/ESO

Imaging and Polarimetry K band VLT/SPHERE/IRDIS

0

-10

H-band reconstruction PIONIER/VLTI

Andrych et al., 2023

Spectroscopic binaries - time resolved spectroscopy

Van Winckel et al., 2009, Oomen et al., 2019

Kluska et al., 2022; Kamath et al., 2014, 2015, 2022

• NearIR excess with a broad onset: hot dust component is indicative of Keplerian disc

Kluska et al., 2022; Kamath et al., 2014, 2015, 2022

- NearIR excess with a broad onset: hot dust component is indicative of Keplerian disc
- Discs are fat
- L(IR) is large fraction of L(star) and the disc evolves...
- Long wavelength spectral index: large grains

Kluska et al., 2022; Kamath et al., 2014, 2015, 2022

The Effect of Binarity:

Photospheric Chemical Depletion in post-AGB binaries

Kamath & Van Winckel 2019; Oomen et al., 2021; Mohorian et al., 2024; Menon et al., 2024

The Effect of Binarity: Photospheric Chemical Depletion in post-AGB binaries

Feedback from disc => Loss of nucleosynthetic history

Kamath & Van Winckel 2019; Oomen et al., 2021; Mohorian et al., 2024; Menon et al., 2024

The Effect of Binarity: Photospheric Chemical Depletion in post-AGB binaries

Feedback from disc => Loss of nucleosynthetic history

- [C/Fe] > 0
- Depletion of refractory elements
- Refractory elements scale with Fe

Kamath & Van Winckel 2019; Oomen et al., 2021; Mohorian et al., 2024; Menon et al., 2024

10-micron silicate feature

IR spectra are very rich and strongly crystalline

The Effect of Binarity: **Photospheric Chemical Depletion in post-AGB binaries**

Van Winckel et al., 2009; Oomen et al., 2019; Kamath & Van Winckel 2019

A second chance for planet formation!?

Haro 6-5B first generation protoplanetary disk

Dark strip is disk seen almost edge-on

500 AU

companion star

1AU

giant primary star

• Most discs (Full discs) start at <u>sublimation</u> temperature • Transition discs (10%) start at larger radii

Kluska et al., 2022

Gas-Dust Separation and Dust Trapping

Britain et al. 2023; Kluska et all 2022

- Depletion in YSO is thought to be by dust trapping by planet formation
- Dust is trapped, clean gas can be accreted
- Depletion is correlated with SED shape (transition discs in Post-AGB stars are more depleted)
- Planet-Disc interaction also in post-AGB binaries?
INSPIRING: INterferometric Survey of Post-agb bInaries with their RING an imaging VLTI Large Programme PI: Kluska, CI: Van Winckel, Kamath, ...

250h with PIONIER and GRAVITY - 11 targets

Main goals:

• Structure of the inner rim vs. binary phase

Circum-secondary accretion

Methodology:

- Image reconstruction
- Geometrical modelling
- Radiative transfer modelling

Kluska et al., 2020, 2021, 2022

- Measuring the morphology and properties of observed planetforming disks surrounding evolved binary stars
- Investigating the formation and evolution of second-generation proto-planetary disks
- Building a theoretical model for second-generation planet formation
- Establishing the nexus between planet formation in young and evolved systems

Main sequence star Post-AGB star Inner disk rim Spiral structure induced by the inner binary Perturbation by a Second-generation planet formation?

Near-infrared interferometry Mid-infrared interferometry Sub-millimeter interferometry + Direct imaging

Evolved Stars' Metamorphosis: a Comprehensive Analysis of The AGB to PN Transition

MACQUARIE University

Astrophysics and Space Technologies Research Centre

AOFISICA WOIZAN OLCA

Evolved Stars' Metamorphosis: a Comprehensive Analysis of The AGB to PN Transition

Mon. Not. R. Astron. Soc. 000, 1-7 (2012) Prin

Printed 31 July 2023 (MN LATEX style file v2.2)

Dust from evolved stars: a pilot analysis of the AGB to PN transition

F. Dell'Agli^{1*}, S. Tosi^{1,2}, D. Kamath^{1,3}, L. Stanghellini⁴, S. Bianchi², P. Ventura^{1,5}, E. Marini¹, D. A. García-Hernández^{6,7} ¹INAF, Osservatorio Astronomico di Roma, Via Frascati 33, 00077, Monte Porzio Catone, Italy ²Dipartimento di Matematica e Fisica, Universitá degli Studi Roma Tre, via della Vasca Navale 84, 00100, Roma, Italy ³Department of Physics and Astronomy, Macquarie University, Sydney, NSW 2109, Australia ⁴NSF's NOIRLab, 950 Cherry Ave., Tucson, AZ 85719, USA

Chemical Depletion in Evolved Stars with Planet Forming Disks! Mohorian et al., 2024; in-prep

Intrinsically s-Process Enhanced Evolved Binaries

Menon et al., 2024

post-AGB circumbinary discs: near & mid-IR interferometry

RT models of protoplanetary discs adapted to central luminous source fit very well.

Detection of JETS from Dynamic Spectra

Bollen et al., 2019, 2020, 2022

- RT (constrains are the Balmer lines)
- •Jet opening angle
- •Jet tilt
- Angular Velocity structure
- Density structure
- •Binary (radius components, orbit)

Wavelength Coverage: 380nm to 900nm

- C I lines at 5380°A(left panel) and 6587°A(right panel)
- High excitation oxygen multiplet at 6156 Å and / or the forbidden oxygen lines at 6300 and 6363 Å. • N I lines at 7423.64°A, 8223.128°A, 8655.878°A and 8728.91°A.
- Ba II lines (e.g., at 4554.03°A and at 6496.89°A)
- Pb I line at 4057.807 Å; Pb II line at 5608.853 Å
- Zn I line at 4810.540°A

Closing Comments and Open Questions...

Closing Comments and Open Questions...

- AGB nucleosynthesis is not homogenous (even within a mass and metallicity range)
- ★ Not all AGB stars are producers of C and *s*-process elements.
- ★ How does this affect Galactic chemical enrichment models?

Scientific Background: Post-AGB Stars as Tracers