

Stellar spectroscopy: an introduction

Tadafumi Matsuno

(Gliese fellow, ARI/ZAH, Universität Heidelberg)

Information from stellar spectra

Topics to be covered

- Stellar spectra at different resolution
- Observations: how and where do we obtain spectra?
- Chemical abundance measurements
- Some results from stellar spectroscopy

Mostly on low-mass stars (<~ 1 solar mass)

Stellar spectra at different resolution

Major absorption lines in the solar spectrum

Spectral classification of stars

KPNO 0.9-m Telescope, AURA, NOAO, NSF

Spectral classes

Spectral type and temperature

High spectral resolution observation

Credit: N.A. Sharp/KPNO/NOIRLab/NSO/NSF/AURA

High-resolution solar spectrum (~1.5% of visible light)

Abundance measurements

Elements in spectra

The Origin of the Solar System Elements

Graphic created by Jennifer Johnson http://www.astronomy.ohio-state.edu/~jaj/nucleo/ Astronomical Image Credits: ESA/NASA/AASNova

The chemical composition of the solar system

The early measurements date back to 1920s (e.g., Payne 1925)

Observations How and where do we obtain spectra?

Tools to disperse lights

High efficiency, easy to make

天文学辞典(日本天文学会)

Light dispersion by gratings

The condition of interference

$$\frac{n\lambda}{d}=\theta=\sin\alpha+\sin\beta,$$

For $n \neq 0$, different λ have interference patterns at different locations

Gray 2021

Echelle spectrograph

n=100 n=101 n=102

Achieve high resolving power by adopting a large *n* (~100)

Echelle spectrographs

High-resolution spectrographs

Spectrographs

UVES

HDS

Multi object spectrograph (MOS)

Fibres are placed on object positions

Spectra of up to a few thousands objects are taken simultaneously

Spectroscopic surveys

Classical observation (up to ~1000 stars)

Survey (~ millions)

Bensby+14

GALAH survey Buder+21

Surveys

Classical observation vs surveys

Surveys provide **large and homogeneous** datasets, which are suitable for studying chemical evolutions of galaxies

Classical observations offer more **flexibility**. You can tune the instrument setup to study selected elements to a desired precision

Modelling of stellar spectra

See also R. Hoppe's talk

Why do we see absorptions lines?

How do we model absorption lines?

Stellar photosphere model

Mod	el stru	ucture				
k	lgTauR	lgTau5	Depth	T	Pe	
1	-5.00	-4.9174	-6.931E+07	4066.8	2.1166E-02	
2	-4.80	-4.7204	-6.672E+07	4102.6	2.7299E-02	
3	-4.60	-4.5278	-6.411E+07	4145.9	3.5324E-02	
4	-4.40	-4.3377	-6.149E+07	4190.4	4.5691E-02	
5	-4.20	-4.1484	-5.884E+07	4235.5	5.9048E-02	
6	-4.00	-3.9593	-5.618E+07	4280.8	7.6224E-02	
7	-3 90	3 7607	-5 340E+07	1326 1	0 9292F-02	l

Atomic data

Spec Ion	WL_air(A) E	Excit(eV)	Vmic	log gf*
'Cr 2',	3300.0829,	4.2937,	1.0,	-2.949,
'Nd 2',	3300.1430,	0.0000,	1.0,	-0.590,
'Ce 2',	3300.1524,	0.7215,	1.0,	-0.550,
'OH 1',	3300.1757,	1.3582,	1.0,	-3.593,
'OH 1',	3300.2932,	1.3582,	1.0,	-3.052,
'V 1',	3300.4003,	1.8676,	1.0,	-0.928,
'Rh 1',	3300.4620,	1.2787,	1.0,	-0.280,
'Fr 2'	3300.5750	0.8864	1.0	-1.340

Wavelengths, energy levels, oscillator strengths

1D LTE calculations

- Most public codes were developed in ~'70s
- Still widely used

- Plane-parallel or spherically symmetric models
- Atomic / molecular level population is given by Boltzmann's equation (independent of radiation)
- Source function is given by a black body

Gray+21

From LTE to non-LTE

- Radiation and level populations are solved together
- It requires extensive data on transitions

From LTE to non-LTE

1D LTE / non-LTE difference

Amarsi+20

From 1D to 3D

- It requires a 3D model of photosphere
- Radiative transfer needs to be solved in the 3D model

1D 3D difference

 $T_{\rm eff}$ =6060K, log(g)=4.5, [Fe/H]=-2.00

Lind & Amarsi 2024

1D / 3D difference

References

- "The Observation and Analysis of Stellar Photospheres" by Gray
- User manuals of high-resolution spectrographs (HDS and UVES)
- On the solar composition: Asplund et al. (2021)
- On 3D/non-LTE analysis: Lind & Amarsi (2024)

Some results from stellar spectroscopy

Some notations

Abundances are usually in log scale and relative to hydrogen

 $A(X) = \log \varepsilon(X) = \log (N_X / N_H) + 12$

They are often measured relative to the Sun

 $[X/H] = A(X) - A(X)_{sun}$

Metals: everything heavier than helium Metallicity: Mass of all the metals, or

[(All metals)/H], but often represented by **[Fe/H]**

```
[X/Fe] = [X/H] - [Fe/H]
```


Why do we measure surface chemical composition?

- The chemical composition is largely unchanged at the surface of low-mass stars during their evolution
- The chemical composition of a 10 Gyr-old star
 - = that of interstellar gas at 10 Gyr ago
- The Universe started with H and He. All the other metals are produced by stars.

Interpreting chemical abundances

Tracer of nucleosynthesis processes

Property of the first stars

Property of the first stars

Massive stars are expected to be more abundant

Studying mass of the first stars from metal-poor stars

Lagae et al. (2023)

Extremely metal-poor (EMP) = more likely to be enriched by the first stars

Abundance pattern of EMP stars constrain the mass of the first stars

Studying mass of the first stars from metal-poor stars

Ishigaki et al. (2018)

Pair-Instability SN is expected for metal-free stars

Heger & Woosley 2002

A star with a PISN abundance pattern

Xing et al. (2023)

Abundance pattern matches a prediction from a 260 Msun PISN

Lithium problems

Lithium is found where it shouldn't exist, and it is not found where it should exist

- Cosmological Lithium problems
- Li-rich stars

Lithium production by Big Bang nucleosynthesis

Cosmological Lithium problems

Is this really an issue of Big Bang nucleosynthesis? Since Li is very fragile, could this be due to stellar evolution?

Li-dip

Stars w/o Li detection

Stars w/ Li detection

Gao+20

Cool stars have lower A(Li) than the warm ones

All the metal-poor stars are in the cool region

^{0.5} Their Li abundance seems to have been affected by stellar evolution

Li at extremely low metallicity

At extremely low metallicity, a further Li depletion is observed

It needs to be explained from stellar evolution theory

From stellar spectroscopy to galactic chemical evolution What chemical abundance of stars tell us about the Universe

Tadafumi Matsuno

(Gliese fellow, ARI/ZAH, Universität Heidelberg)

Lithium problems

Lithium is found where it shouldn't exist, and it is not found where it should exist

- Cosmological Lithium problems
- Li-rich stars

Li-rich stars

Li in giant

Li-rich stars at every evolutionary status

A small fraction of stars show enormous Li enhancements

Li production related to mixing in the giant phase? Sackmann & Boothroyd 1999; Charbonnel & Balachandran 2000

But there are also Li-rich stars before the red giant branch phase

Li isotope ratio in Li-rich stars

Sitonova, Matsuno et al. (2023)

Possible 6Li detection in a Li-rich star

Sitonova, Matsuno et al. (2023)

Chemical enrichments of disrupted galaxies in the Milky Way

Galaxies grow through mergers and accretions

Accretion remnants in the Milky Way (building blocks)

A way to study more than "a galaxy"

- Galaxy interactions
- Chemical evolutions
- Nucleosynthesis processes

Credit: Takayuki Saitoh

Accretion remnants in kinematics of stars

Spatial coherence quickly disappears

The main progenitor Satellite being accreted

Accretion remnants in kinematics of stars

Spatial coherence quickly disappears

Energy-Angular momentum

Helmi+00

Accreted galaxies are expected to appear as over-densities = kinematic substructures

Data-driven identification of substructures

Lövdal+22, Ruiz-Lara+22, Dodd+22

Clustering analysis

See also, e.g., Yuan+20

Chemical abundance

Properties of the substructures

- Does each substructure correspond to and contain a single accreted galaxy?
- What is the star formation history of the accreted galaxies?

Constraining astrophysical processes

- Is star formation in these accreted galaxies similar to that in MW?
- Is chemical enrichment different?

Chemical characterization of substructures

In-situ stars A better membership Stars with different origins can 38.6% overlap Significant overlap Accreted stars A11 61.4% Associating substructures One of accreted galaxies A single accretion can form **Multiple** more than one substructures. substructures

Khoperskov+23

Example: [α/Fe] ratio

A more massive galaxy forming stars efficiently A less massive galaxy

Example: [α/Fe] ratio

Enrichments by Type Ia SNe

A more massive galaxy forming stars efficiently A less massive galaxy

Example: [α/Fe] ratio

More massive galaxies have [α/Fe] at high [Fe/H]

A more massive galaxy forming stars efficiently A less massive galaxy

Example: two distinct populations among halo stars

We can learn about formation of stellar populations using elements with known origins

The formation history of the Milky Way

The formation history of the Milky Way

Ruiz-Lara+22

The formation history of the Milky Way

Precise abundance for more substructures

Matsuno+22a, b

All the abundances are on the same scale

Seq. and HS have distinct and lower [Mg/Fe] than MW and GE

The astrophysical origin of low [Mg/Fe]

The naive interpretation is large type Ia supernovae contribution **The detailed abundance pattern** is the key

The astrophysical origin of low [Mg/Fe]

We fit abundance patterns of individual objects <u>Parameters</u>

- α (slope in IMF)
- Z_{CC} (Representative metallicity of CCSNe)
- N_{la}/N_{CC}

The astrophysical origin of low [Mg/Fe]

The abundance patterns of Seq. and HS are very well explained by large contributions from type Ia SNe

Suggestive of slower chemical evolution, lower stellar mass

Precise abundance for more substructures

Matsuno+22a, b

All the abundances are on the same scale

Seq. and HS have distinct and lower [Mg/Fe] than MW and GE

What does the different abundance indicate?

Sequoia = an accreted galaxy + ~20% Gaia-Enceladus

3D non-LTE vs 1D LTE

3D non-LTE correction for halo stars

Nissen & Schuster 10

New population seen in 3D non-LTE analysis

Matsuno, Amarsi (2024, in prep.)

New population seen in 3D non-LTE analysis

The two sub-populations differ in kinematics

Constraining nucleosynthesis with substructures

Kinematic substructures

- They were once dwarf galaxies, having undergone their own chemical enrichments
- Their stars are now orbiting around the Milky Way. Some are in the solar neighbourhood.

A new opportunity to constrain the origin of elements

R-process elements

About half of elements heavier than Fe are produced by so-called rapid neutron-capture process

Their formation requires very high neutron density, and **the site is still debated**

A promising site for R-process nucleosynthesis

The most promising site is NSMs

- observations of the afterglow of GW170817 (e.g., Tanaka+17)
- numerical simulations of the nucleosynthesis (e.g., Wanajo+14)

But there should be a "delay time" in NSMs They require two NSs to merge

Is this consistent with observation?

Image credit: Goddard Space Flight Center/NASA

An opportunity to provide a new constraint

If NSMs are the main source of r-process elements, similarly to $[\alpha/Fe]$, $[Eu/\alpha]$ should depend on the star formation efficiency

We expect high [Eu/α] for stars from dwarf galaxies (including those in kinematic substructures)

The largest sample of Eu abundance from GALAH

An optical high-resolution spectroscopic survey with a multi-object spectrograph

Matsuno+21b

Example: testing r-process sites with Gaia-Enceladus

[Eu/Mg] is clearly higher in stars formed in Gaia-Enceladus than those formed in-situ

Exactly what we would expect if Eu is produced by NSMs

A more massive galaxy forming stars efficiently A less massive galaxy

Eu enrichments in MW and in dwarf galaxies

A clear sequence between [Eu/Mg] and [Mg/Fe] among old stellar populations in and around the Milky Way

Eu production with a delay by NSM Just like Fe production with a delay by SNe Ia

There are lots of potential opportunities

Because some substructures are known to be peculier

E.g., Helmi streams are extremely low in **Sr** and **Y** (Aguado+21;Matsuno+22b)

There are works in progress on **Nitrogen**, and **neutron-capture elements**

The era of large spectroscopic surveys

Horta+23

These are complementary

- **High-precision for a small sample** (Monty+20, Aguado+21, Matsuno+22a,b, Ceccarelli+24...) e.g., chemical membership, evaluating contamination
- Moderate precision for a large sample (Buder+21, Ruiz-Lara+22, Horta+23 ...)

e.g., chemical evolution trend, global picture

Take away

- There will be massive data from spectroscopic surveys in the near future
- Classical observations remain important as they offer flexible, high-precision observations
- The cosmological Li problem seems to be a stellar evolution problem, but there are still mysteries (Li-depletion in EMP stars, Li-rich stars)
- Metal-poor stars constrain the properties of the first stars
- Disrupted galaxies open a new opportunities to study the origin of elements