19th Russbach School on Nuclear Astrophysics March 6, 2024

Superheavy elements, Fission, R-process

Ani Aprahamian University of Notre Dame Notre Dame, IN (USA)

1 H Hydrogen 1.008					Per	iodi	c Tal	ble o	of th	e El	eme	ents					2 He Helium 4.003
3 Li Lithium 6.941	4 Be Beryllium 9.012											5 B Boron 10.811	6 C Carbon 12.011	7 N Nitrogen 14.007	8 0 0xygen 15.999	9 F Fluorine 18.998	10 Ne Neon 20.180
11 Na Sodium 22,990	12 Magnesium 24.305											13 Al Aluminum 26,982	14 Si Silicon 28.086	15 P Phospharus 30.974	16 S Sulfur 32.066	17 Cl Chlorine 35.453	18 Argon 39,948
19 K Potassium 39.098	20 Ca Calcium 40.078	21 Sc Scandium 44.956	22 Ti Titanium 47.867	23 V Vanadium 50.942	24 Cr Chromium 51.996	25 Manganese 54.938	26 Fe Iron 55.845	27 Co Cobalt 58.933	28 Ni Nickel 58.693	29 Cu Copper 63.546	30 Zn Zinc 65.38	31 Gallum 69.723	32 Gee Germanium 72.631	33 Ass Arsenic 74.922	34 See Selenium 78.972	35 Br Bromine 79.904	36 Kr Krypton 84.798
37 Rb Rubidium 85.468	38 Sr Strontium 87.62	39 Y Yttrium 88.906	40 Zr Zirconium 91.224	41 Nb Niobium 92.906	42 Mo Molybdenum 95.95	43 TC Technetium 98.907	44 Ru Ruthenium 101.07	45 Rh Rhodium 102.906	46 Pd Palladium 106.42	47 Ag Silver 107.868	48 Cd Cadmium 112.411	49 In Indium 114.818	50 Sn Tin 118.711	51 Sb Antimony 121.760	52 Te Tellurium 127.6	53 Iodine 126.904	54 Xe Xenon 131.294
55 Cs Cesium 132.905	56 Ba Barium 137.328	57-71	72 Hf Hafnium 178.49	73 Ta Tantalum 180.948	74 W Tungsten 183.84	75 Re Rhenium 186.207	76 Osmium 190.23	77 Ir Iridium 192.217	78 Pt Platinum 195.085	79 Au Gold 196.967	80 Hg Mercury 200.592	81 TI Thailium 204.383	82 Pb Lead 207.2	83 Bismuth 208.980	84 PO Polonium [208.982]	85 At Astatine 209.987	86 Radon 222,018
87 Fr Francium 223.020	88 Ra Radium 226.025	89-103	104 Rf Rutherfordium [261]	105 Db Dubnium [262]	106 Sg Seaborgium [266]	107 Bh Bohrium [264]	108 HS Hassium [269]	109 Mt Meitnerium [268]	110 Ds Darmstadtium [269]	111 Rg Roentgenium [272]	112 Cn Copernicium [277]	113 Nh Nihonium unknown	114 Fl Flerovium [289]	115 Mc Moscovium unknown	116 LV Livermorium [298]	117 TS Tennessine unknown	118 Oganesson unknown
		57 Lanth 138	anum 905	E 59 Fraseo 1116	Pr dymium 0.908	Id Image: Second	ethium 15	63 Euro 0.36	64 64 63 64 64 64 64 64 64 64 64 64 64 64 64 64	65 6 0linium 57.25	66 Dysp 8.925	67 b b b b b b b b	68 10 1 10 10 10 10	69 T 500 7.259	70 1 1 1 1 1 1 1 1 1 1 1 1 1	71 b Lute 3.055	U etium 1.967
		89 Actin 227	90 10028	rium .038	92 92 Ura Ura 231	93 Nept 3.029	94 94 P Plut 24	95 A 95 A A A A A A A A A A A A A A A A	96 96 Cu 24	97 Financia	Sk kelium 7.070	Ornium 1.080	ES teinium 254)	101 N Mend 25	1d elevium (8.1	JO pelium 9,101	.r encium 62]
Alkaline Transition Basic Semimetal Nonmetal Halogen Noble Lanthanide Actinide																	

What are the heaviest elements made? Are there more elements?

Butherfordium 1964 Target HIPu, HICE

1974 Target PBk, PhareCf Target PICI

Staborgium

Nihonium 2004

Target ^{HI}Am Ideoly from 115

Fleravium 2000 Target ***Pu

Moscovium 2004 Tanget ³⁴³Am

Livermonium 2005 Target ^{345,346}Cm

117

Tennessine 2010 Target ^{Sei}Bk

Oganesson 2006 Target ^{sei}CI

E. M. Holmbeck, European Physical Journal A, 59:28 (2023)

Were the Superheavy elements made in the r-process?

Explosive

r-process

Origin of more than 50% of all the elements beyond iron

Site of r-process is still one of open challenges in all of physics today

Temperature, density as a function of time, initial compositions, neutrons

where is the site of the r-process?

Merging neutron stars versus core collapse supernovae, gravitational wave detection identified neutron star mergers as a source of the very heavy elements!

Abundances from other neutron induced nucleosynthesis processes

The s-process in comparison to the rprocess. The scaling depends on the strength of the s-process neutron source The i-process in CEMP stars, again the scale depends on the strength of neutron source

Nucleosynthesis and observation of the heaviest elements

E. M. Holmbeck 1,a (), T. M. Sprouse 2,3,b (), M. R. Mumpower 2,3,c ()

¹ The Observatories of the Carnegie Institution for Science, Pasadena, CA 91101, USA

² Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA

3 Center for Theoretical Astrophysics, Los Alamos National Laboratory, Los Alamos, NM 87545, USA

Snapshots of Simulations Input is **limited** to what we know

GW170817 + 70 Electromagnetic transients

THE ASTROPHYSICAL JOURNAL LETTERS, 848:L18 (8pp), 2017 October 20

Lu visible signatures go into the IR James Webb Does the r-process make the actinides? Big Question: Fission

D. Kasen

flux

GW170817 +70 Electromagnetic Transients

t = 2.97 days

THE ASTROPHYSICAL JOURNAL LETTERS, 848:L18 (8pp), 2017 October 20

Implications for nuclear physics

LIGO, VIRGO, GAGRA began new observation run on May 24, 2023

The European Physical Journal A

Regular Article – Theoretical Physics

Have superheavy elements been produced in nature?

Are superheavy elements produced in the r-process?

Reactions of synthesis

Yuri Oganessian. International Conference "Heaviest Nuclei and Atoms" Apr.25-30, 2023, Yerevan

Courtesy of A. Karpov

r-process idea from weapons tests: B²FH Reviews of Modern Physics 29(4), 547 (1957)

Neutron star: 10⁴³ or 10⁴¹ neutrons/cm²

Recent observations of r-process enhanced stars

Science 382, No.6675, Dec. 2023

Ru, Rh, Pd, Ag

Eu, Gd, Dy, Ho, Er, Tm, Yb, Hf, Os, Pt

log €(X/Zr)_{base} log ɛ(X/Zr) - $(v, r^2, n) = (0.92, \ll 0.001)$ 2.0 0.0 2.0 [Eu/Fe] [Eu/Fe] [Eu/Fe] X = La. Ce. Pr. Nd, Sm $\log \varepsilon(X/Ba) - \log \varepsilon(X/Ba)_{haven base}$ 1.0 0.0 2.0

X = Se, Sr, Y, Nb, Mo

Fission recycling!

A>260 (110+ 150) were made in the r-process

Title: Observational signatures of transuranic fission fragments in stars

X = Cd, Sn, Te

 $(48 \le Z \le 52)$

Authors: Ian U. Roederer^{1,2*}, Nicole Vassh³, Erika M. Holmbeck^{4,5,2}, Matthew R. Mumpower^{6,7,2}, Rebecca Surman^{8,2}, John J. Cowan⁹, Timothy C. Beers^{8,2}, Rana Ezzeddine^{10,2}, Anna Frebel^{11,2}, Terese T. Hansen¹², Vinicius M. Placco¹³, Charli M. Sakari¹⁴

Open Challenges to Nuclear Physics resulting from the neutron star merger

A. Aprahamian NuPECC in Sept. 2021

Fission

Figure 4. Low-energy (thermal) neutron-induced fission fragment distributions with ^{233,235}U and ²³⁸Pu. The dotted line indicates the fission of ²³⁵U with 14 MeV neutrons.

FISSION CAN IMPACT FINAL ABUNDANCES

Figure by Mumpower

Network calculation of tidal ejecta from a neutron star merger (FRDM2012)

etadf can shape the final pattern near the A=130 peak

This is because of a relatively long fission timescale

Conclusion \Rightarrow we need a good description of fission yields to understand abundances near $A \sim 130$.

Kodama & Takahashi (1975) • Shibagaki et al. ApJ (2016) • Mumpower et al. ApJ 869 1 (2018) • Vassh et al. J. Phys. G (2019)

Cluster decay becomes the main fission mode

 $^{294}\text{Og} \rightarrow ^{208}\text{Pb} + ^{86}\text{Kr}_{50}$

Z. Matheson et al., Phys. Rev. C 99, 041304(R) (2019)

Robust prediction: extremely asymmetric fission

Courtesy of W. Nazarewicz

Yuri Oganessian. International Conference "Heaviest Nuclei and Atoms" Apr.25-30, 2023, Yerevan

Mass Distribution of the Fission Fragments

Yuri Oganessian. International Conference "Heaviest Nuclei and Atoms" Apr.25-30, 2023, Yerevan

Decay modes of the ²³⁴U nucleus

4He

Yuri Oganessian. International Conference "Heaviest Nuclei and Atoms" Apr.25-30, 2023, Yerevan

 $\textbf{232Th} + \textbf{48Ca} \rightarrow \textbf{280}_{Ds^{\star}}$

New nuclei ²⁷⁶Ds, ²⁷²Hs, ²⁶⁸Sg New isotope ²⁷⁵Ds, confirmation for ²⁷¹Hs, ²⁶⁷Sg, and ²⁶³Rf

First observation of transition to the mainland

Yuri Oganessian. International Conference "Heaviest Nuclei and Atoms" Apr.25-30, 2023, Yerevan

125 new decay chainsNew isotopesConnect to mainland

Bomb debris from environmental tests of nuclear weapons

Fission: LLNL – DUBNA – AANL

Ru, Rh, Pd, Ag

Ranking of 10 longest-lived isotopes:	
106Ru	374 days
103Ru	39 days
111Ag	7.45 d
105Rh	
112 Pd	
109 Pd	
113 Ag	
105 Ru	
112Ag	
111Pd	
107Rh	

Conclusion: Superheavies are probably made in the r-process!

Did the merger indeed make the actinides?
How far did the nucleosynthesis go?
What is the role of fission ?
What type of fission?

Fission (?): LLNL – ND- LBNL-JINR

Bomb debris from environmental tests of nuclear weapons NIF experiments LBL

Thank you for your attention!

🗉 🚺 🗸 🗿 🖉 🖪 🤇

Fig. 1. Observed abundance patterns compared with fission model predictions.

Shown are logarithmic abundances (open circles) measured for 30 *r*-process elements in the 42 stars of our sample, plotted as a function of atomic number. The symbol sizes are proportional to [Eu/Fe], and error bars indicate 1 σ uncertainties. The green line is the empirical baseline pattern we defined as the mean abundance ratios for the subset of 13 stars with [Eu/Fe] \leq +0.3. Light shading and dark green shading indicate \pm 1 and \pm 2 times the standard error in the baseline, respectively. The orange lines indicate models of fission fragments added to the baseline pattern; the dotted line has equal contributions from the baseline and the fission model, the dashed line has two parts fission fragments plus one part baseline pattern, and the solid line has four parts fission plus one part baseline. (A) Elements 34 < *Z* < 52, normalized to Zr (solid circle). Elements are labeled at bottom. (B) Residuals between the data and the baseline pattern in (A). (C and D) Same as (A) and (B), respectively, but for elements 56 < *Z* < 78, normalized to Ba (solid circle). Numerical values are provided in data S1.

What are the uncertainties? r- and s- process branchings

RADIONUCLIDES IN THE r-PROCESS

While the nucleosynthesis of the *r*-process is short-lived (~1 second)

The creation of radionuclides spans half-lives from microseconds to near-stable

Different epocs have unique and interesting radioactive nuclei present along with associated signatures

Figure by Mumpower

Courtesy of A. Karpov

Mumpower, McLaughlin, Surman, and Steiner, Ap. J. 2016

Orford et al., Phys. Rev. Lett. 120, 262702 (2018) Observed r-process elemental distributions

FIG. 2. (Color online) Comparison between experimental values and theoretical predictions (red band) of the nuclear masses relative to the Duflo-Zuker mass model for neodymium and samarium isotopes in a merger accretion disk wind scenario ($s/k_B = 30$, $\tau = 70$ ms, and $Y_e = 0.2$).

FIG. 3. (Color online) Rare-earth peak abundances using Dulfo-Zuker masses (black dashed) as compared to the result for this same astrophysical trajectory after the algorithm finds the mass predictions of Fig. 2 (solid red band). Pink and blue curves serve to show the change in the abundance pattern obtained from using other disk wind parameters but with the same mass surface.

Hot r-process trajectory

Uncorrelated nuclear mass uncertainties and r-process abundance predictions

A. Aprahamian, K. Lee, S. R. Lesher, Eur. Jour. Phys. To be published (2024)M. M. Busso et al., Front. Astron. Space Sci. 9, 956633 (2022).

