The r-process Alliance Mapping the r-process with stellar abundances

Mila Racca PhD student

Supervisor: Terese Hansen Co-supervisor: Karin Lind

19th Russbach School on Nuclear Astrophysics

Carl Axel Arrhenius 1757 – 1824

Carl Axel Arrhenius 1757 – 1824

Ytterby mine terbium, dysprosium, holmium, erbium, thulium, ytterbium, lutetium. Where do these elements come from?

Carl Axel Arrhenius 1757 – 1824

Ytterby mine terbium, dysprosium, holmium, erbium, thulium, ytterbium, lutetium.

ORIGINS OF THE ELEMENTS

This periodic table depicts the primary source on Earth for each element. In cases where two sources contribute fairly equally, both appear.

s-process and r-process

 $m n
ightarrow
m p + e^- + ar{
u}$

s-process and r-process

s-process

r-process

S-process: Tn >> Tβ nn < ~10⁸ /cm³

 $m n
ightarrow
m p + e^- + ar{
u}$

s-process and r-process

- neither process

S-process: Tn >> Tβ nn < ~10⁸ /cm³

 $m n
ightarrow
m p + e^- + ar{
u}$

S-process: Tn >> Tβ nn < ~10⁸ /cm³

Astrophysical sites of r-process

Astrophysical sites of r-process

Neutron star mergers

Core collapse supernovae

Astrophysical sites of r-process

Neutron star mergers

Core collapse supernovae

Astrophysical sites of r-process

Neutron star mergers

Core collapse supernovae

Jet-supernovae

R-Process Alliance

Bright, V < 13.5 \rightarrow can observe many stars in short time

Bright, V < $13.5 \rightarrow$ can observe many stars in short time

Cold, 4000 < Teff < 5500 \rightarrow Get Eu abundance or good upper limits

Bright, V < $13.5 \rightarrow$ can observe many stars in short time

Cold, 4000 < Teff < 5500 \rightarrow Get Eu abundance or good upper limits

Metal poor, [Fe/H] $< -2 \rightarrow$ Only few nucleosynthesis events

Bright, V < $13.5 \rightarrow$ can observe many stars in short time

Cold, 4000 < Teff < 5500 \rightarrow Get Eu abundance or good upper limits

Metal poor, [Fe/H] $< -2 \rightarrow$ Only few nucleosynthesis events

Credit: Vini Placco

[Fe/H] = log10(NFe/NH)star - log10(NFe/NH)Sun -

Holmbeck et al. (2020)

r-II stars have **[Eu/Fe]≥+0.7** 72

[Fe/H] = log10(NFe/NH)star - log10(NFe/NH)Sun -

Holmbeck et al. (2020)

50

: analysis of the stellar portraits

Roederer et al. (2018)

R=80000, S/N=100

Conclusions

First homogeneous analysis of a large sample of r-II stars to trace the origins and the evolution of the r-elements in the Milky Way

$$A(X) = \log_{10} \frac{N_X}{N_H} + 12$$
$$[X/H] = A_*(X) - A_{\odot}(X)$$

email: mila.racca@astro.su.se

