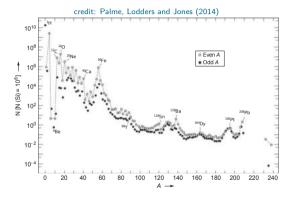
r-process nucleosynthesis: An Introduction

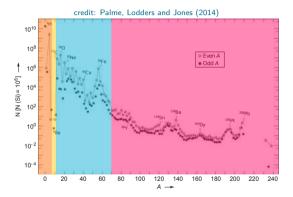
Samuel A. Giuliani

Universidad Autónoma de Madrid, Madrid, Spain University of Surrey, Guildford, UK

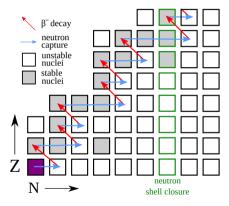
March 6th, 2024

19th Russbach School on Nuclear Astrophysics
March 3 – 9, 2024
Rußbach am Paß Gschütt (Austria)





Solar system elements: where do they come from?

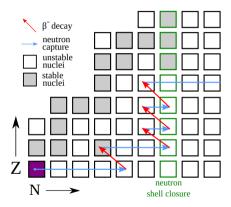


- H, He and (some) Li: Big-Bang nucleosynthesis.
- (some) Li, Be and B: Galactic cosmic rays on interstellar medium.
- Nuclei up to Fe peak: Stellar evolution and explosions.
- Beyond Fe peak: p nuclei, and (s- and r-)neutron capture processes.

The s process

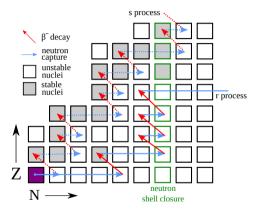
B²FH, Rev. Mod. Phys. 29, 547 (1957); A. Cameron, Report CRL-41 (1957)

 $s({
m low \ neutron \ capture}) \ {
m process:} \ au_{(n,\gamma)} > au_{eta^-}$, $n_n = 10^{10-12} \ {
m cm}^{-3}$

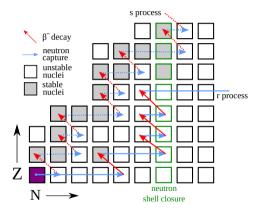


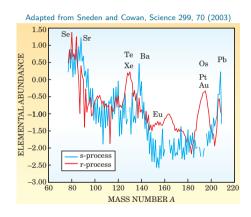
- The path to heavier nuclei stays close to stability.
- Astrophysical site: $0.8-8~{\rm M}_{\odot}$ stars.

The r process

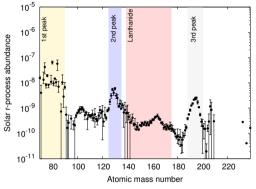

B²FH, Rev. Mod. Phys. 29, 547 (1957); A. Cameron, Report CRL-41 (1957)

 $r(\text{apid neutron capture}) \text{ process: } \tau_{(n,\gamma)} \ll \tau_{\beta^-}, \ n_n > 10^{26} \ \text{cm}^{-3}$


- The path to heavier nuclei goes through neutron-rich nuclei.
- Astrophysical site with high neutron fluxes \rightarrow transient object.


Solar system abundances of heavy elements

- Accumulation of material at shell closures → peak structure.
- ullet Roughly equal contributions by s and r process.

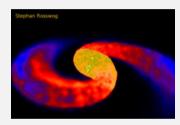

Solar system abundances of heavy elements

- ullet Accumulation of material at shell closures o peak structure.
- \bullet Roughly equal contributions by s and r process.

Modeling r-process abundances

K. Hotokezaka et al., Int. J. Mod. Phys. D 27, 1842005 (2018)

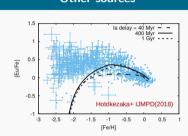
Astrophysical site


Sets thermodynamic conditions

Nuclear physics

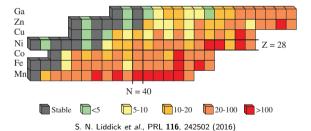
Shapes abundances distribution

r-process: astrophysical sites


Neutron star mergers

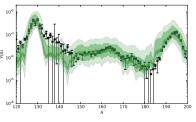
- GW170817 and kilonova: lanthanides are produced!
- From simulations:
- $\sim 10^{-2}~{\rm M}_{\odot}$ ejected mass.
- Neutron rich material.
- Synthesis of nuclei with A > 90.

see poster of Ryota Hatami (#4) and Jan Kuske (#5)


Other sources

- Other scenarios:
- CCSne (produce first peak).
- Collapsars
- Magnetorotational supernovae
- Dominating source?

r-process: nuclear physics input


- ullet r process requires the knowledge of the properties of neutron-rich nuclei:
 - Nuclear masses, β-decay rates, neutron-capture rates, fission rates and yields, . . .
- Rely on theoretical predictions: impact of uncertainties?

• Nuclei with longest lifetimes have largest impact.

r-process: nuclear physics input

- ullet r process requires the knowledge of the properties of neutron-rich nuclei:
 - Nuclear masses, β -decay rates, neutron-capture rates, fission rates and yields, ...
- Rely on theoretical predictions: impact of uncertainties?

S. N. Liddick et al., PRL 116, 242502 (2016)

Nuclei with longest lifetimes have largest impact.

The build-up of elements occur via composition changes through three main processes:

The build-up of elements occur via composition changes through three main processes:

• Decays: $a \rightarrow b + c$

$$rac{dn_a}{dt} = -\lambda_a n_a$$
 with $\lambda_a = \ln(2)/t_{1/2}(a)$

The decay rate λ_a can depend on temperature and density.

In order to distinguish between changes in the density (hydrodynamic) from changes in the composition (nuclear reactions), one introduces the **abundance**:

$$Y_i = rac{n_i}{n}$$
 with $n pprox rac{
ho}{m_n} \equiv$ number density of nucleons

$$\frac{dY_a}{dt} = -\lambda_a Y_a$$

E.g.: β decay, spontaneous fission

The build-up of elements occur via composition changes through three main processes:

The build-up of elements occur via composition changes through three main processes:

• Capture processes: $a + b \rightarrow c + \gamma$

$$\begin{split} \frac{dn_a}{dt} &= -n_a n_b \langle \sigma v \rangle_{ab} \\ \frac{dY_a}{dt} &= -Y_a Y_b \frac{\rho}{m_u} \langle \sigma v \rangle_{ab} \equiv -\lambda_a Y_a \end{split}$$

being $\lambda_a = (Y_b \rho/m_u) \langle \sigma v \rangle_{ab}$ the destruction rate of target nuclei a by reaction with b.

The build-up of elements occur via composition changes through three main processes:

• Capture processes: $a + b \rightarrow c + \gamma$

$$\begin{split} \frac{dn_a}{dt} &= -n_a n_b \langle \sigma v \rangle_{ab} \\ \frac{dY_a}{dt} &= -Y_a Y_b \frac{\rho}{m_u} \langle \sigma v \rangle_{ab} \equiv -\lambda_a Y_a \end{split}$$

being $\lambda_a = (Y_b \rho/m_u) \langle \sigma v \rangle_{ab}$ the destruction rate of target nuclei a by reaction with b.

• Photodissociations: $a + \gamma \rightarrow b + c$

$$egin{aligned} rac{dn_a}{dt} &= -n_a n_\gamma \langle \sigma c
angle_{a\gamma} \ rac{dY_a}{dt} &= -Y_a n_\gamma \langle \sigma c
angle_{a\gamma} \equiv -\lambda_a Y_a \end{aligned}$$

being $\lambda_a = n_\gamma \langle \sigma c \rangle_{a\gamma}$ the photodissociation rate of target nuclei a.

Stellar reaction rates

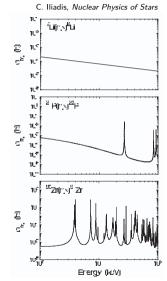
General reaction between n_a and n_b particles per volume of targets a and projectiles b:

$$a+b \rightarrow c+d$$

The number of reactions per unit of time, volume and pair of reactants:

$$r_{ab} = rac{n_a(v_a)n_b(v_b)}{(1+\delta_{ab})}\sigma(v)v, \quad ext{with} \quad v = |v_a-v_b|$$

Nuclei in stellar environments follow a Maxwell-Boltzmann thermal distribution:


$$P(v)dv = 4\pi v^{2} \left(\frac{m}{2\pi kT}\right)^{3/2} \exp\left(-\frac{mv^{2}}{2kT}\right) dv$$

leading to the MB averaged cross section

$$\langle \sigma v \rangle = \int_0^\infty \sigma P(v) v dv = \left(\frac{8}{\pi \mu}\right)^{1/2} \frac{1}{(kT)^{3/2}} \int_0^\infty \sigma(E) E \exp\left(-\frac{E}{k_B T}\right) dE \quad \text{with } \mu = \frac{m_a m_b}{m_a + m_b}; \ E = \frac{\mu v^2}{2} \ .$$

The reaction rate $r_{ab} = n_a n_b \langle \sigma v \rangle$ depends critically on the cross section $\sigma(E)$.

Cross sections

- Neutron-induced reactions cross sections can be computed within the Hauser-Feshbach statistical theory: statistical average over many resonances.
- For a $i(n,\gamma)m$ reaction proceeding from the target nucleus i in the state $\mu(J_i^\mu,\pi_m^\mu)$ to a final nucleus m in a state $\nu(J_m^\nu,\pi_m^\nu)$ through the compound state J^π with energy E:

$$\sigma_{n,\gamma}^{\mu
u}(E_{i,n}) \propto rac{T_n^\mu T_\gamma^
u}{T_{
m tot}}$$

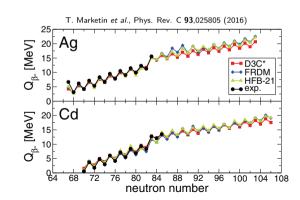
• Inverse $c(\gamma, b)a$ rates can be computed from detailed balance:

$$\lambda_{\gamma} = \left(\frac{m_u kT}{2\pi\hbar^2}\right)^{3/2} \frac{G_a G_b}{G_c} \left(\frac{A_a A_b}{A_c}\right)^{3/2} \exp(-Q/kT) \frac{\langle \sigma v \rangle_{ab}}{1 + \delta_{ab}}$$

being
$$G(T) = \sum_{i} (2J_i + 1)e^{-E_i/(kT)}$$
.

β decays

Beta-decay rates can be computed from Fermi's Golden rule:


$$\lambda_eta = rac{\mathsf{In}(2)}{t_{1/2}} = rac{g^2 m_e^5 \, c^4 |M_{fi}|^2}{f(Q_eta) 2 \pi^3 \hbar^7}$$

being $|M_{\mathrm{fi}}|$ the (GT and F) nuclear matrix elements, and $f(Q_{\beta})$ the Fermi integral.

Two main ingredients:

- Q_{β} -values: large for neutron-rich nuclei.
- β -decay strength: determines the possible emission of delayed neutrons.

For heavy nuclei, forbidden transition ($l_{e\nu} > 0$) become relevant for the estimation of the rates.

Network equations

The time derivative of the abundances is modeled through a set of differential equations (reaction network equations):

$$\frac{dY_i}{dt} = \sum_j P_j^i \lambda_j Y_j + \sum_{jk} P_{jk}^i \frac{\rho}{m_u} \langle \sigma v \rangle_{jk} Y_j Y_k + \sum_{jkl} P_{jkl}^i \left(\frac{\rho}{m_u}\right)^2 \langle \sigma v \rangle_{jkl} Y_j Y_k Y_l$$

 P^i describe how often the nucleus i is created or destroyed, and whether two or more identical nuclei are involved in the reactions.

- Stiff system: timescales change by several orders of magnitude.
- Decoupled from hydrodynamic.
- Tremendous simplifications at high T and ρ .

Nuclear statistical equilibrium (NSE)

ullet At high T and ho, fusion reactions and photodissociation rates are large, leading to chemical equilibria

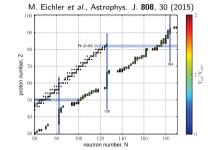
$$p + (Z, A) \rightleftharpoons (Z + 1, A) + \gamma \qquad \rightarrow \qquad \mu_p + \mu(Z, A) = \mu(Z + 1, A + 1)$$

$$n + (Z, A) \rightleftharpoons (Z, A + 1) + \gamma \qquad \rightarrow \qquad \mu_n + \mu(Z, A) = \mu(Z, A + 1)$$

Nuclear statistical equilibrium (NSE): chemical equilibria across the whole nuclear chart

$$Z\mu_p + N\mu_n = \mu(Z, A)$$

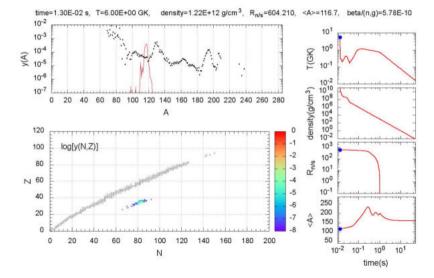
• At NSE, nuclear abundances depend on nuclear properties (binding energy B_i) and environment conditions $(T, \rho, \text{ and } Y_e = \sum_i Z_i Y_i)$, but not the individual rates!

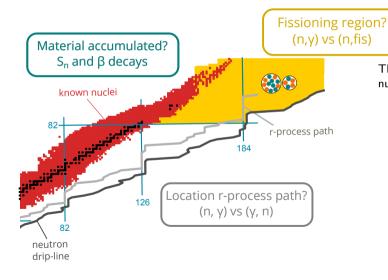

$$Y_i(Z_i,N_i) = Y_n^{N_i} Y_p^{Z_i} \frac{G_i(T) A_i^{3/2}}{2_i^A} \underbrace{\left(\frac{\rho}{m_u}\right)^{(A_i-1)}}_{\substack{\text{high } \rho \\ \text{favor heavy nuclei}}} \underbrace{\left(\frac{2\pi\hbar^2}{m_u kT}\right)^{3(A_i-1)/2}}_{\substack{\text{intermediate: tighthy bound nuclei}}} \underbrace{\exp\left(\frac{B_i}{kT}\right)}_{\substack{\text{intermediate: tighthy bound nuclei}}}$$

Weak reactions?

Quasi statistical equilibrium (QSE)

For astrophysical conditions with large n_n and $T \sim 1 \, \text{GK}$:

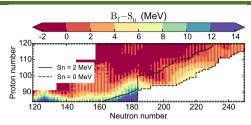

- Neutron-rich nuclei ($S_n \lesssim 2$ MeV) can be produced.
- Charge-particle reactions are frozen: isotopic chains are only connected through β decays.
- But chemical equilibrium between (n, γ) and (γ, n) reactions still holds.
- This produces a quasiequilibrium clusters along isotopic chains: $(\gamma, n) \rightleftharpoons (n, \gamma)$ equilibrium. Abundance ratios in each isotopic chain independent of reaction rates:

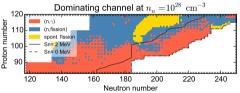

$$\frac{Y(Z, A+1)}{Y(Z, A)} = n_n \frac{G(Z, A+1)}{2G(Z, A)} \left(\frac{A+1}{A}\right)^{3/2} \left(\frac{2\pi\hbar^2}{m_u k T}\right)^{3/2} \exp\left(\frac{S_n(A+1)}{k T}\right)$$

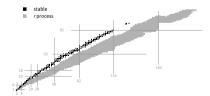
• For a given n_n and T, abundance maximum in all isotopic chains have the same S_n ($\sim 2-3$ MeV).

r-process nucleosynthesis in NSM

Nuclear inputs


The r-process requires the knowledge of nuclear properties of neutron-rich nuclei:


- nuclear masses:
- β-decay rates:
- neutron capture rates;
- fission rates and yields.


1) Compute nuclear properties using EDF.

2) Calculate stellar reaction rates from Hauser-Feshbach theory.

3) Obtain r-process abundances and light curve using nuclear network calculations.

The Hartree-Fock-Bogolyubov (HFB) formalism

The ground-state wavefunction is obtained by minimizing the total energy:

$$\delta E[|\Psi\rangle] = 0\,,$$

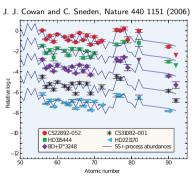
where $|\Psi\rangle$ is a quasiparticle (β) vacuum:

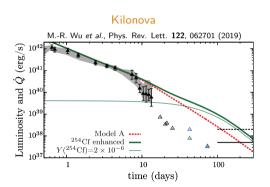
$$|\Psi\rangle = \prod_{\mu} \beta_{\mu} |0\rangle \quad \Rightarrow \quad \beta_{\mu} |\Psi\rangle = 0.$$

The energy density functionals (EDF) provide a phenomenological ansatz of the effective nucleon-nucleon interaction:

- Gogny, Skyrme, relativistic EDF, BCPM, ...

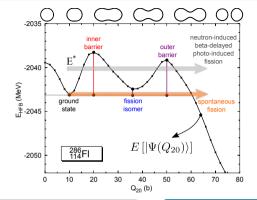
Sophisticated many-body methods can be built on top: QRPA (β -decays and excited stated), PGCM (excited states), TDDFT and TDGCM (fission)...


ntroduction Basic working of the r-process Nuclear inputs and r-process Conclusions


Fission and $\it r$ process

Thielemann+(1983), Panov+(2005), Martinez-Pinedo+(2007), Beun+(2008), Petermann+(2012),

Eichler+(2015), Goriely(2015), Mumpower+(2018), Giuliani+(2018,2020), Zhu+(2019), Wu+(2019), Vassh+(2019,2020), ...


Abundances

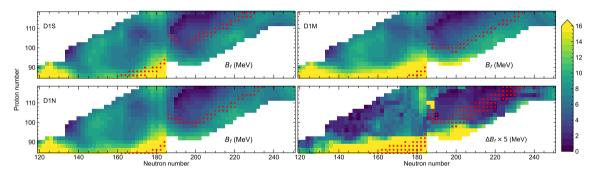
Fission shapes abundances and kilonova light curve, providing a mechanism for a robust r-process nucleosynthesis.

The fission process

Potential Energy Surface $\mathcal V$

Energy evolution from the initial state to the scission point.

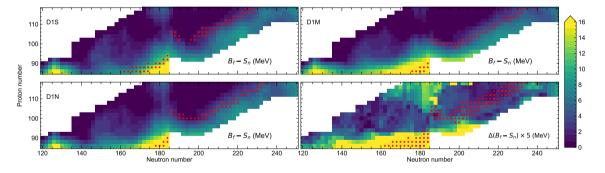
Collective inertias \mathcal{M}


Resistance of the nucleus against the deformation forces.

$$P \propto 1/\exp(2S[L]) \to S[L(Q_{20})] = \int_{0}^{b} dQ_{20} \sqrt{\mathcal{M}(Q_{20})[\mathcal{V}(Q_{20}) - E_{0}]}$$

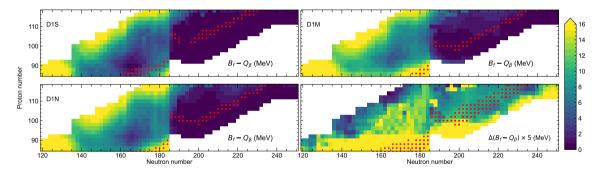
troduction Basic working of the r-process Nuclear inputs and r-process Conclusions

Systematic of fission barriers B_f


• $B_f \rightarrow$ stability against fission.

- B_f trends qualitatively similar across different Gogny interactions:
 - Z > 94: systematic deviations \sim 1–2 MeV.
 - $Z \leq 94$: deviations up to 10 MeV (but very high B_f).
- Location of the r process differ above N=184.

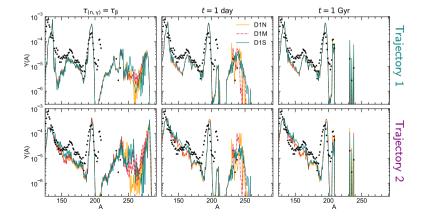
Systematic of $B_f - S_n$


• For $B_f - S_n \lesssim 2 \, \text{MeV} \, (n, \text{fis})$ dominates over (n, γ) .

- Production of (super)heavy nuclei requires the overcoming of neutron shell closure at N=184.
- r-process path pushed into a region of low $B_f S_n$.

Systematic of $B_f - Q_{\beta}$

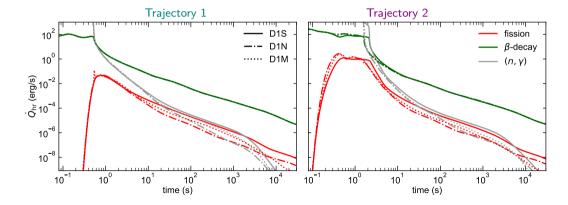
• $B_f - Q_\beta \to \text{competition between fission and } \beta\text{-decay}$.



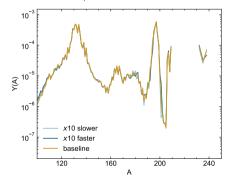
• Path towards stability interrupted by region of low fission barriers.

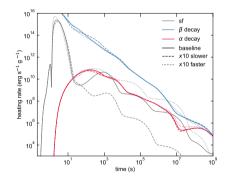
Impact of fission on the r-process: abundances Y

Dynamical ejecta from neutron star merger (C. E. Collins et al., MNRAS 101093 (2023)):


- Trajectory 1: $Y_e = 0.151$; n/s = 105;
- Trajectory 2: $Y_e = 0.027$; n/s = 1100.

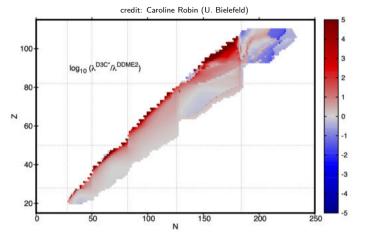
Impact of fission on the r-process: heating rates


• Trajectory 1: $Y_e \lesssim 0.05$; $n/s \approx 600$


• Trajectory 2: $Y_e \lesssim 0.15$; $n/s \approx 120$

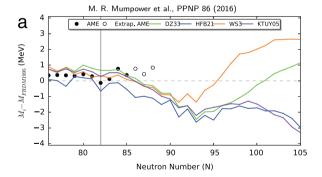
Impact of β -decay rates on fission

- Impact of β -decay half-lives varies with the observable.
- We modified $t_{1/2}^{\beta}$ (FRDM) $\geq 3 \ s$ and study the impact on abundances and heating rates.



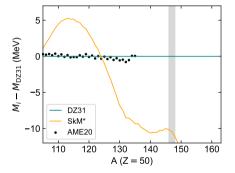
Fission heating rate sensitive to "slow" β -decay rates $(\tau_{\beta} \gtrsim \text{few seconds})$

roduction Basic working of the r-process Nuclear inputs and r-process Conclusion


Systematic of β -decay rates

 β-decay rates closer to stability show larger uncertainties → more systematic studies are required (see also E. M. Ney et al., Phys. Rev. C 102, 034326 (2020)).

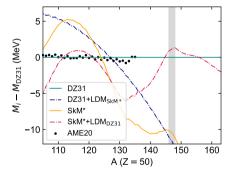
Nuclear masses - Global and local changes


Nuclear masses determine thresholds energy for n captures, β decays and fission, and the location of r-process path in $(n, \gamma) \rightleftharpoons (\gamma, n)$ equilibrium.

Very different predictions far from stability: are these differences relevant for the r-process abundances?

Nuclear masses - Global and local changes

Nuclear masses determine thresholds energy for n captures, β decays and fission, and the location of r-process path in $(n, \gamma) \rightleftharpoons (\gamma, n)$ equilibrium.

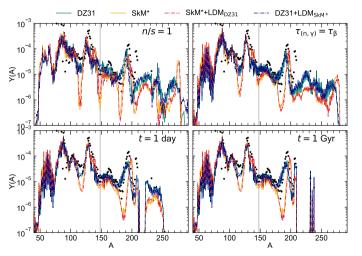

Very different predictions far from stability: are these differences relevant for the r-process abundances?

Masses = homogeneous part (global, LDM) + quantum shell-correction (local)

troduction Basic working of the r-process Nuclear inputs and r-process Conclusions

Nuclear masses - Global and local changes

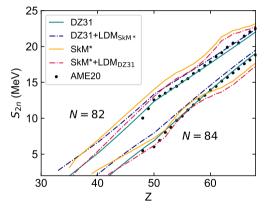
Nuclear masses determine thresholds energy for n captures, β decays and fission, and the location of r-process path in $(n, \gamma) \rightleftharpoons (\gamma, n)$ equilibrium.


Very different predictions far from stability: are these differences relevant for the r-process abundances?

Masses = homogeneous part (global, LDM) + quantum shell-correction (local)

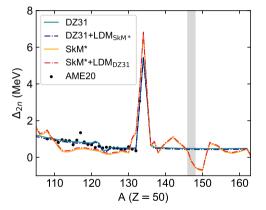
ntroduction Basic working of the τ -process Nuclear inputs and r-process Conclusions

Symmetry energy and r process


NSM trajectories from Collins et al., MNRAS 101093 (2023)

Abundances insensitive to global changes in masses (e.g., symmetry energy).

ntroduction Basic working of the r-process Nuclear inputs and r-process Conclusions


Nuclear masses - Global and local changes

Abundance mostly related to local changes on S_{2n} (rather than bulk properties of masses).

ntroduction Basic working of the r-process Nuclear inputs and r-process Conclusions

Nuclear masses - Global and local changes

Abundance mostly related to local changes on S_{2n} (rather than bulk properties of masses).

Collaborators

MSU & NSCL/FRIB (East Lansing)

E. Flynn

R. Jain

D. Lav

W. Nazarewicz

L. Neufcourt

GSI & TUD (Darmstadt)

G. Martínez Pinedo

Universität Bielefeld

C. Robin

UAM (Madrid)

L. M. Robledo

VECC (Kolkata)

J. Sadhukhan

Sinica Institute (Taiwan)

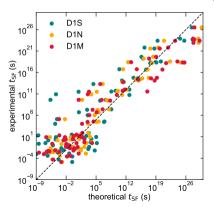
M.-R. Wu

Funding

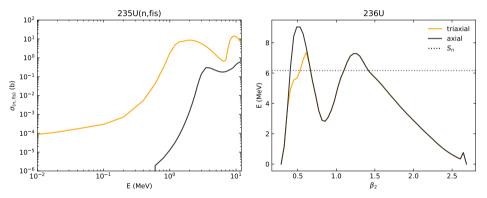
Nuclear inputs and r-process

Postdoc position in Nuclear Physics Group at Universidad Autónoma de Madrid.

Starting date: mid-end 2024

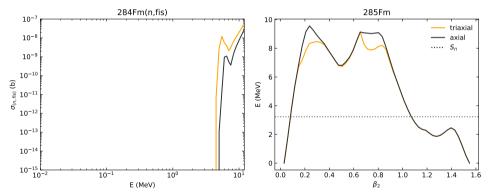

Contact: samuel.giuliani@uam.es

Backup


$t_{1/2}^{\rm sf}$: theory vs experiment

- ullet D1S, D1N and D1M $t_{1/2}^{
 m sf}$ are systematically overpredicted:
 - inclusion of pairing as dof (minimum action path vs minimum energy path), collective inertias, triaxiality...
- ullet Collective inertias are renormalized in order to reproduce experimental $t_{1/2}^{
 m sf}$.

Global calculation of fission nuclear properties


- ullet Model assumptions o systematic uncertainties o impact on nucleosynthesis?
- Relevant physics close to stability \neq relevant physics in exotic nuclei.

Systematic deviations close to stability could be compensated in exotic nuclei (and vice versa) →
global calculations from different models are required.

Global calculation of fission nuclear properties

- Model assumptions → systematic uncertainties → impact on nucleosynthesis?
- Relevant physics close to stability \neq relevant physics in exotic nuclei.

Systematic deviations close to stability could be compensated in exotic nuclei (and vice versa) →
global calculations from different models are required.