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Introduction Basic working of the r-process Nuclear inputs and r-process Conclusions

Solar system elements: where do they come from?

credit: Palme, Lodders and Jones (2014)
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Solar system elements: where do they come from?

credit: Palme, Lodders and Jones (2014)
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• H, He and (some) Li: Big-Bang nucleosynthesis.

• (some) Li, Be and B: Galactic cosmic rays on interstellar medium.

• Nuclei up to Fe peak: Stellar evolution and explosions.

• Beyond Fe peak: p nuclei, and (s- and r-)neutron capture processes.
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The s process B2FH, Rev. Mod. Phys. 29, 547 (1957) ; A. Cameron, Report CRL-41 (1957)

s(low neutron capture) process: τ(n,γ) > τβ− , nn = 10
10−12

cm
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• The path to heavier nuclei stays close to stability.

• Astrophysical site: 0.8-8 M⊙ stars.
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The r process B2FH, Rev. Mod. Phys. 29, 547 (1957) ; A. Cameron, Report CRL-41 (1957)

r(apid neutron capture) process: τ(n,γ) ≪ τβ− , nn > 10
26

cm
−3

β  decay

neutron
capture

neutron 

shell closureN

Z

unstable
nuclei
stable
nuclei

• The path to heavier nuclei goes through neutron-rich nuclei.

• Astrophysical site with high neutron fluxes → transient object.
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Solar system abundances of heavy elements
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• Accumulation of material at shell closures → peak structure.

• Roughly equal contributions by s and r process.
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Solar system abundances of heavy elements
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Adapted from Sneden and Cowan, Science 299, 70 (2003)
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• Accumulation of material at shell closures → peak structure.

• Roughly equal contributions by s and r process.
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Modeling r-process abundances

10
-11

10
-10

10
-9

10
-8

10
-7

10
-6

10
-5

 80  100  120  140  160  180  200  220

1
s
t 

p
e

a
k

2
n

d
 p

e
a

k

L
a

n
th

a
n

id
e

3
rd

 p
e

a
k

S
o

la
r 

r-
p

ro
c
e

s
s
 a

b
u

n
d

a
n

c
e

Atomic mass number

K. Hotokezaka et al., Int. J. Mod. Phys. D 27, 1842005 (2018)

Astrophysical site

Sets thermodynamic conditions

Nuclear physics

Shapes abundances distribution



Introduction Basic working of the r-process Nuclear inputs and r-process Conclusions

r-process: astrophysical sites see poster of Ryota Hatami (#4) and Jan Kuske (#5)

Neutron star mergers

• GW170817 and kilonova:

lanthanides are produced!

• From simulations:

- ∼ 10
−2

M⊙ ejected mass.
- Neutron rich material.
- Synthesis of nuclei with A > 90.

Other sources
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• Other scenarios:

- CCSne (produce first peak).
- Collapsars
- Magnetorotational supernovae
- . . .

• Dominating source?
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r-process: nuclear physics input

• r process requires the knowledge of the properties of neutron-rich nuclei:

- Nuclear masses, β-decay rates, neutron-capture rates, fission rates and yields, . . .

• Rely on theoretical predictions: impact of uncertainties?

Stable <5 5-10 10-20 20-100 >100

Zn

Cu

Ni

Co

Fe

Mn

Ga

Z = 28

N = 40

S. N. Liddick et al., PRL 116, 242502 (2016)

• Nuclei with longest lifetimes have largest impact.
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r-process: nuclear physics input

• r process requires the knowledge of the properties of neutron-rich nuclei:

- Nuclear masses, β-decay rates, neutron-capture rates, fission rates and yields, . . .

• Rely on theoretical predictions: impact of uncertainties?

S. N. Liddick et al., PRL 116, 242502 (2016)

• Nuclei with longest lifetimes have largest impact.
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Composition change

The build-up of elements occur via composition changes through three main processes:
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Composition change

The build-up of elements occur via composition changes through three main processes:

• Decays: a → b + c
dna

dt
= −λana with λa = ln(2)/t1/2(a)

The decay rate λa can depend on temperature and density.
In order to distinguish between changes in the density (hydrodynamic) from changes in the
composition (nuclear reactions), one introduces the abundance:

Yi =
ni

n
with n ≈

ρ

mu

≡ number density of nucleons

dYa

dt
= −λaYa

E.g.: β decay, spontaneous fission
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Composition change

The build-up of elements occur via composition changes through three main processes:

• Capture processes: a + b → c + γ

dna

dt
= −nanb⟨σv⟩ab

dYa

dt
= −YaYb

ρ

mu

⟨σv⟩ab ≡ −λaYa

being λa = (Ybρ/mu)⟨σv⟩ab the destruction rate of target nuclei a by reaction with b.
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Composition change

The build-up of elements occur via composition changes through three main processes:

• Capture processes: a + b → c + γ

dna

dt
= −nanb⟨σv⟩ab

dYa

dt
= −YaYb

ρ

mu

⟨σv⟩ab ≡ −λaYa

being λa = (Ybρ/mu)⟨σv⟩ab the destruction rate of target nuclei a by reaction with b.

• Photodissociations: a + γ → b + c

dna

dt
= −nanγ⟨σc⟩aγ

dYa

dt
= −Yanγ⟨σc⟩aγ ≡ −λaYa

being λa = nγ⟨σc⟩aγ the photodissociation rate of target nuclei a.
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Stellar reaction rates
General reaction between na and nb particles per volume of targets a and projectiles b:

a + b → c + d

The number of reactions per unit of time, volume and pair of reactants:

rab =
na(va)nb(vb)

(1 + δab)
σ(v)v, with v = |va − vb|

Nuclei in stellar environments follow a Maxwell-Boltzmann thermal distribution:

P(v)dv = 4πv
2

(
m

2πkT

)3/2

exp

(

−
mv2

2kT

)

dv

leading to the MB averaged cross section

⟨σv⟩ =

∫
∞

0

σP(v)vdv =

(
8

πµ

)1/2

1

(kT)3/2

∫
∞

0

σ(E)E exp
(

−
E

kBT

)

dE with µ =
mamb

ma + mb

; E =
µv2

2
.

The reaction rate rab = nanb⟨σv⟩ depends critically on the cross section σ(E).
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Cross sections

C. Iliadis, Nuclear Physics of Stars

• Neutron-induced reactions cross sections can be computed within the
Hauser-Feshbach statistical theory: statistical average over many
resonances.

• For a i(n, γ)m reaction proceeding from the target nucleus i in the
state µ(J µ

i , πµ
i ) to a final nucleus m in a state ν(J ν

m , πν
m) through the

compound state J π with energy E :

σµν
n,γ(Ei,n) ∝

Tµ
n Tν

γ

Ttot

• Inverse c(γ, b)a rates can be computed from detailed balance:

λγ =
(

mukT

2πℏ2

)3/2 GaGb

Gc

(
AaAb

Ac

)3/2

exp(−Q/kT)
⟨σv⟩ab

1 + δab

being G(T) =
∑

i
(2Ji + 1)e−Ei/(kT).



Introduction Basic working of the r-process Nuclear inputs and r-process Conclusions

β decays
Beta-decay rates can be computed from Fermi’s Golden rule:

λβ =
ln(2)

t1/2

=
g2m5

e c4|Mfi |2

f (Qβ)2π3ℏ7

being |Mfi | the (GT and F) nuclear matrix elements, and f (Qβ) the Fermi integral.

Two main ingredients:

• Qβ-values: large for neutron-rich nuclei.

• β-decay strength: determines the possible
emission of delayed neutrons.

For heavy nuclei, forbidden transition (leν > 0)
become relevant for the estimation of the rates.

T. Marketin et al., Phys. Rev. C 93,025805 (2016)
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Network equations

The time derivative of the abundances is modeled through a set of differential equations (reaction
network equations):

dYi

dt
=

∑

j

P
i
j λjYj +

∑

jk

P
i
jk

ρ

mu

⟨σv⟩jkYjYk +
∑

jkl

P
i
jkl

(
ρ

mu

)2

⟨σv⟩jklYjYkYl

P i describe how often the nucleus i is created or destroyed, and whether two or more identical nuclei
are involved in the reactions.

• Stiff system: timescales change by several orders of magnitude.

• Decoupled from hydrodynamic.

• Tremendous simplifications at high T and ρ.
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Nuclear statistical equilibrium (NSE)
• At high T and ρ, fusion reactions and photodissociation rates are large, leading to chemical equilibria

p + (Z , A) ⇄ (Z + 1, A) + γ → µp + µ(Z , A) = µ(Z + 1, A + 1)

n + (Z , A) ⇄ (Z , A + 1) + γ → µn + µ(Z , A) = µ(Z , A + 1)

• Nuclear statistical equilibrium (NSE): chemical equilibria across the whole nuclear chart

Zµp + Nµn = µ(Z , A)

• At NSE, nuclear abundances depend on nuclear properties (binding energy Bi) and environment
conditions (T , ρ, and Ye =

∑

i
ZiYi), but not the individual rates!

Yi(Zi , Ni) = Y
Ni
n Y

Zi
p

Gi(T)A
3/2

i

2A
i

(
ρ

mu

)(Ai−1)

︸ ︷︷ ︸

high ρ
favor heavy nuclei

high T
favor light nuclei

︷ ︸︸ ︷
(

2πℏ2

mukT

)3(Ai−1)/2

exp
(

Bi

kT

)

︸ ︷︷ ︸

intermediate:
tightly bound nuclei

• Weak reactions?
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Quasi statistical equilibrium (QSE)

For astrophysical conditions with large nn and T ∼ 1 GK:

• Neutron-rich nuclei (Sn ≲ 2 MeV) can be produced.

• Charge-particle reactions are frozen: isotopic chains are only
connected through β decays.

• But chemical equilibrium between (n, γ) and (γ, n) reactions still
holds.

• This produces a quasiequilibrium clusters along isotopic chains:
(γ, n) ⇄ (n, γ) equilibrium. Abundance ratios in each isotopic
chain independent of reaction rates:

Y (Z , A + 1)

Y (Z , A)
= nn

G(Z , A + 1)

2G(Z , A)

(
A + 1

A

)3/2
(

2πℏ2

mukT

)3/2

exp

(
Sn(A + 1)

kT

)

M. Eichler et al., Astrophys. J. 808, 30 (2015)

• For a given nn and T , abundance maximum in all isotopic chains have the same Sn (∼ 2 − 3 MeV).
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r-process nucleosynthesis in NSM
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Nuclear inputs

82
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126

184

neutron

drip-line

r-process path

known nuclei

Material accumulated?

Sn and β decays

Material accumulated?

Sn and β decays

Location r-process path?

(n, γ) vs (γ, n)

Fissioning region?

(n,γ) vs (n,fis)

The r-process requires the knowledge of
nuclear properties of neutron-rich nuclei:

• nuclear masses;

• β-decay rates;

• neutron capture rates;

• fission rates and yields.
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1) Compute nuclear properties using EDF.
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2) Calculate stellar reaction rates from
Hauser-Feshbach theory.
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3) Obtain r-process abundances and light curve
using nuclear network calculations.
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The Hartree-Fock-Bogolyubov (HFB) formalism

The ground-state wavefunction is obtained by minimizing the total energy:

δE [|Ψ⟩] = 0 ,

where |Ψ⟩ is a quasiparticle (β) vacuum:

|Ψ⟩ =
∏

µ

βµ|0⟩ ⇒ βµ|Ψ⟩ = 0 .

The energy density functionals (EDF) provide a phenomenological ansatz of the effective
nucleon-nucleon interaction:

- Gogny, Skyrme, relativistic EDF, BCPM, . . .

Sophisticated many-body methods can be built on top: QRPA (β-decays and excited stated), PGCM
(excited states), TDDFT and TDGCM (fission). . .
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Fission and r process Thielemann+(1983), Panov+(2005), Martinez-Pinedo+(2007), Beun+(2008), Petermann+(2012),

Eichler+(2015), Goriely(2015), Mumpower+(2018), Giuliani+(2018,2020), Zhu+(2019), Wu+(2019), Vassh+(2019,2020), . . .

Abundances
J. J. Cowan and C. Sneden, Nature 440 1151 (2006)
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Fission shapes abundances and kilonova light curve, providing a mechanism for a robust r-process
nucleosynthesis.
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The fission process
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Systematic of fission barriers Bf

• Bf → stability against fission.
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• Bf trends qualitatively similar across different Gogny interactions:

- Z > 94: systematic deviations ∼ 1–2 MeV.
- Z ≤ 94: deviations up to 10 MeV (but very high Bf ).

• Location of the r process differ above N = 184.
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Systematic of Bf − Sn

• For Bf − Sn ≲ 2 MeV (n, fis) dominates over (n, γ).
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• Production of (super)heavy nuclei requires the overcoming of neutron shell closure at N = 184.

• r-process path pushed into a region of low Bf − Sn .
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Systematic of Bf − Qβ

• Bf − Qβ → competition between fission and β-decay.
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• Path towards stability interrupted by region of low fission barriers.
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Impact of fission on the r-process: abundances Y

Dynamical ejecta from neutron star merger (C. E. Collins et al., MNRAS 101093 (2023)):

• Trajectory 1: Ye = 0.151; n/s = 105;

• Trajectory 2: Ye = 0.027; n/s = 1100.
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Impact of fission on the r-process: heating rates

• Trajectory 1: Ye ≲ 0.05; n/s ≈ 600

• Trajectory 2: Ye ≲ 0.15; n/s ≈ 120
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Impact of β-decay rates on fission

• Impact of β-decay half-lives varies with the observable.

• We modified t
β
1/2

(FRDM) ≥ 3 s and study the impact on abundances and heating rates.
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Systematic of β-decay rates

credit: Caroline Robin (U. Bielefeld)

• β-decay rates closer to stability show larger uncertainties → more systematic studies are required
(see also E. M. Ney et al., Phys. Rev. C 102, 034326 (2020)).
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Nuclear masses - Global and local changes

Nuclear masses determine thresholds energy for n captures, β decays and fission, and the location of
r-process path in (n, γ) ⇄ (γ, n) equilibrium.

M. R. Mumpower et al., PPNP 86 (2016)

Very different predictions far from stability: are these differences relevant for the r-process abundances?
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Nuclear masses - Global and local changes

Nuclear masses determine thresholds energy for n captures, β decays and fission, and the location of
r-process path in (n, γ) ⇄ (γ, n) equilibrium.
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Very different predictions far from stability: are these differences relevant for the r-process abundances?

Masses = homogeneous part (global, LDM) + quantum shell-correction (local)
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Nuclear masses - Global and local changes

Nuclear masses determine thresholds energy for n captures, β decays and fission, and the location of
r-process path in (n, γ) ⇄ (γ, n) equilibrium.
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Very different predictions far from stability: are these differences relevant for the r-process abundances?

Masses = homogeneous part (global, LDM) + quantum shell-correction (local)
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Symmetry energy and r process NSM trajectories from Collins et al., MNRAS 101093 (2023)
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Nuclear masses - Global and local changes
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Abundance mostly related to local changes on S2n (rather than bulk properties of masses).
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Nuclear masses - Global and local changes
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Abundance mostly related to local changes on S2n (rather than bulk properties of masses).
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Global calculation of fission nuclear properties
• Model assumptions → systematic uncertainties → impact on nucleosynthesis?

• Relevant physics close to stability ̸= relevant physics in exotic nuclei.
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• Systematic deviations close to stability could be compensated in exotic nuclei (and vice versa) →
global calculations from different models are required.
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