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The birth of the Sun and

Nuclear burning its planets

Length scale ~ 104 m Length scale ~ 10" m
Temperature > 107 K Temperature <103 K

inside stars inside a molecular cloud
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Silicon Carbide (SiC) grains

Presolar Grain Database
of single grains
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SiC grains from AGB stars show the
slow neutron-capture signature:
e.g., the large (= um) grains
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Profile of the SiC grains from AGB stars show the
13Cneutron  slow neutron-capture signature:

source? e.g., the large (= um) grains
(Liu et al. 2018) .
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SiC grains from AGB stars show the
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Neutron captures produce
negative 0(83Sr/26Sr) only when

[Ce/Y] is also negative!
(Lugaro et al. 2020)
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Age-metallicity relationship in the solar neighborhood
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Nissen et al. (2020): 72 nearby solar-type stars
with very well determined ages show two distinct
sequences. The old but high metallicity stars:

1. Were there at the time of the birth of the Sun?
2. Did they migrate there later?



Age-metallicity relationship in the solar neighborhood
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1. Were there at the time of the birth of the Sun?  galactic chemical evolution (GCE) model
2. Did they migrate there later? of Spitoni et al. (2019).
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Chemical Evolution of the Milky Way

Figure from Richard Longland



Radioactive Chemical Evolution of the Milky Way

Time of birth of the Sun
(from meteoritic data)

Time of last event to contribute
to the Sun’s material
(from stellar nucleosynthesis
models)

Time of birth of the molecular cloud
(from stellar nucleosynthesis and
galactic evolution models)




Radioactive Chemical Evolution of the Milky Way

Time of last event to contrlbute
to the Sun’s material
(from stellar nucleosynthesis
models)

Time of birth of the molecular cloud
(from stellar nucleosynthesis and
galactic evolution models)




Radioactive Chemical Evolution of the Milky Way

Evolution of
the mass
ratio of a
radioactive
to stable
nucleus
1024 %
= N Uncertainties from, e.g., mass of
5_0 N gas, star formation rate etc.:
= 107 three different independent
Time of Sun’s formation realizations of the Milky Way

00 25 50 75 100 125 u
Galactic age [Gyr] Coteé et al. 2019a, ApJ



Radioactive Chemical Evolution of the Milky Way

Evolution of
the mass
ratio of a

radioactive
to stable

nucleus

But stellar ejecta are discrete in time:
using a Monte Carlo method we need to
add a further statistical uncertainty
(median, 1o, 2, full) to each of the
three Galaxies.

\

Time of Sun’s formation

00 25 50 75 '10.0 125 15.0 Coté et al. 2019b, ApJ; Yagiie Lopez et al. 2021, Ap)
Time [Gyr]



Evolution of the number of biscuits in a plate
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Evolution of the number of biscuits in a plate

y time interval 0

omeone adds

Every time interval T someone eats  biscuits to the plate
half of the biscuits from the plate

How many biscuits are on the plate?

Ever
S

If T/ is small, then there are typically no biscuits, unless they were just added

If ©/0 is large, then the number of biscuits can build up!



Radioactive Chemical Evolution of the Milky Way
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Radioactive Chemical Evolution of the Milky Way

Rapid neutron- 10
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Radioactive Chemical Evolution of the Milky Way

Rapid neutron- T
capture process o 12 1 —— Constant 8
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Capture process = 0.501 g See poster by Benjamin So0s
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Radioactive Chemical Evolution of the Milky Way

Time of birth of the Sun
(from meteoritic data)

The last neutron
star merger
to contribute to
the Sun material

from r-process 22| and 24’Cm
Coté et al. 2021, Science




Radioactive Chemical Evolution of the Milky Way

Time of birth of the Sun
(from meteoritic data)

The last neutron
star merger
to contribute to
the Sun material

Birth of the molecular cloud, from s- 15 s
process 197Pd, 135Cs, and 182Hf from r-process **’l and **/Cm

Trueman et al. 2022, Ap) Coteé et al. 2021, Science




With 1°07Pd, 13°Cs, and 182Hf, 2°>Pb is also produced
by the s process in AGB stars

B stavle w—fp S-process path ZPo - .
N el e 2 1. First experimentally
e-capture : = bound-state B -decay \ deriVEd decay rates for
a-decay a-decay 2098 2B 205T|
s-only e @-capture 20.1 Ey 5.01d . 205
2. First Accurate “°°Pb and
7y L 2en | DY K K 23%;: 205T| decay rates as
170M 194 .
A \ function of stellar
™, temperature and
N density!

Leckenby et al., in preparation




Example cases olécular Clouc

0 . . =
S_Ca_le; arge e Yo (50 z 00 A

= 90% from
asymptotic giant
branch (AGB) stars

= 10% from
core-collapse
supernovae

0.1 < half life < 100 Myr

@ “ short-lived \/ @

Meteoritic rocks
and inclusions




Analysis of bulk meteoritic rocks has revealed
small but widespread variations in stable isotope abundances.

See lectures by Christoph Burkhardt

1. Anomalies probably carried into the Solar System by a “carrier”,
a “physical trap”, probably stardust

2. The stardust was destroyed, and the nuclear signature diluted.
Very small variations ~ 104 - 10", error bars ~ 10°

3. How did the stardust distribute these anomalies is not fully
known, many scenarios are proposed



Example: Molybdenum variations in bulk meteorites

€ 9°Mo [86]

Neutron source reaction rates,
and neutron-capture cross
sections needed!



€ 9°Mo [86]

€ %Mo [86]

Neutron source reaction rates,
and neutron-capture cross
sections needed!

Lugaro et al. (2023, EPJA)

Molybdenum variations in bulk meteorites

Koehler (2022, PRC) measured a *>Mo
neutron-capture cross section 30%

higher than the standard by Winters and
Macklin (1987, Apl)

Internal norm. to °8Mo/°®Mo
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Example: Ca, Ti, Cr variations in bulk meteorites

5 T 5
Outer Solar System ; ] I ]
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Neutron source reaction rates, neutron-
capture cross sections and decay rates
needed!

Figure from Rifenacht et al. (2023, GCA)



Example: Ca, Ti, Cr variations in bulk meteorites

Outer S:)Iar System '
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Neutron source reaction rates, neutron-
capture cross sections and decay rates
needed!

Figure from Rifenacht et al. (2023, GCA)

] 40Ca: Dillman et al. Phys. Rev. C (2009)
| 42Ca, *3Ca, #Ca: Musgrove et al., Nucl.

Phys. (1977)

| 46Ca: Mohr et al., Phys. Rev. C (1999).

] 48Ca: Mohr et al., Phys. Rev. C (1997).

| 48Ti, 47Ti, 48Ti, 4°Ti, °°Ti: Allen et al.
Technical report AAEC/E402, Australian

Atomic Energy Commission (1977).

>0Ti: Sedyshev et al., Phys. Rev. C (1999).
>0Cr, 23Cr, >*Cr: M. Kenny et al., Technical
report AAEC/E400, Australian Atomic
Energy Commission (1977).

>2Cr: Rohr et al., Phys. Rev. C (1989)
41Ca, #°C, >1Cr : only theoretical (n,y);
latest decay rates from Fuller et al. 1987
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