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Why is stellar modelling important?

Explaining and predicting stellar 
lives (and deaths) affects:

• observations (stellar parameter 
estimations, isochrone fitting, 
asteroseismology…) 
• supernova progenitor studies

• neutron star and black hole physics

• nuclear reaction rates

• stellar nucleosynthesis
2sdo.gsfc.nasa.gov



• The life of a star: a sequence of nuclear burning phases
• A progression in time, but also in space:           

the onion-ring structure

A star’s life: nuclear burning phases
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Karakas & Lattanzio (2014)
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1D stellar evolution models

Advantages:

• can model the full star and cover 
the entire lifetime
• easily compared to obsevations
• can explore mass and metallicity

Disadvantages:

• assuming spherical symmetry
• parametrized physics for multi-D 

processes: mass loss, convection, 
rotation, magnetic fields, opacity, 
binarity (and their interplay) Rizzuti et al. (2023)



3D hydrodynamic models

Advantages:

• deviations from spherical 
symmetry: model fluid instabilities

• can include multi-D processes 
(convection, rotation, magnetic
fields)

• no need to assume prescriptions as
in 1D (mixing length theory, 
convective boundary mixing)

• can use 3D data to constrain 1D 
parametrization

Disadvantages:

• high computational cost

• limited by fluid dynamical timescales 

• cannot simulate full star or entire lifetime

• difficult to compare results to 
observations

Modelling a 3D box enclosed in / enclosing a star
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321D: the link between 1D and multi-D

1D models:

• spherical symmetry

• assuming prescriptions / 
parametrizations

• subjected to uncertainties

multi-D models:

• break the symmetry

• small space 
extension

• short timescale (hrs)
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improve theoretical 

prescriptions /      

estimate coefficients

Initial 

conditions



Nuclear burning in 1D models
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• 1D MESA models can use a simple 21-isotope network

• It covers all burning phases, hydrogen- to silicon-, but with approximations

• Larger networks are available, but no one is perfect

Timmes, cococubed.com



Nuclear burning in 3D models

• Need to consider the 
computational cost

• Time-independent: fixed
heating profile from 1D model

• Time-dependent: explicit set of 
isotopes and nuclear reactions

→ more accurate, but more 
expensive!
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Jones et al. (2017)



A simple network for 3D models
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• We use a 12-isotopes nuclear burning routine:

→ n, p, 4He, 12C, 16O, 20Ne, 23Na, 24Mg, 28Si, 31P, 32S, 56Ni

• Energy generation reactions for different environments:

→He-burning:  4He(2α,γ)12C(α,γ)16O(α,γ)20Ne;

→C-burning: 12C(12C,α)20Ne; 12C(12C,p)23Na; 23Na(p,α)20Ne; 23Na(p,γ)24Mg;

→Ne-burning: 20Ne(γ,α)16O;   20Ne(α,γ)24Mg;   24Mg(α,γ)28Si

→O-burning: 16O(16O,α)28Si;   16O(16O,p)31P;   31P(p,α)28Si(α,γ)32S

• For normalization: 56Ni

• Assuming: the latest rates of the JINA-REACLIB database 



The PROMPI 3D Hydrodynamical Code

• PROmetheus MPI (domain 
decomposition)

• finite-volume, time explicit, 
Eulerian, PPM implementation

• Helmholtz eos, general nuclear 
reaction network

• Cartesian, spherical or cylindrical 
geometry

• reflective or periodic boundary 
conditions, shell gravity, velocity
damping...
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PROMPI : Meakin, Arnett+ 2007-onwards

PROMETHEUS : Fryxell, Mueller, Arnett 1989

PPM method : Colella & Woodward 1984



Possible choices for a setup

First of all, the physics of the problem: 

→ stellar mass, age, metallicity, core or burning layers…

Then:

• Initial conditions from a 1D stellar evolution model

• Problem geometry and resolution: plane-parallel, spherical…
→ be careful with singularities

• Boundary conditions: periodic, reflective…
• Gravity: constant, polynomial…
• Energy generation and nuclear network
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Muller (2020)



Modelling a Ne-burning shell of 20 M⊙
star, Z⊙, with PROMPI:

• 1D MESA model with extra mixing 
(expo decay diffusion, Herwig 2000)

• 3D spherical “box-in-a-star” of 𝑟= 3.6 − 8.5 × 108 cm; angle ~ 26°
• fuel convection with a 12-isotopes 

network for Ne-burning

• multiple simulations with different 
resolutions and “boosting factors”
• following the shell untill fuel 

exhaustion

3D simulations of a neon-burning shell

12
Rizzuti et al. (2023)



Vertical slice of the cell: velocity 
magnitude in colour scale.

We can see:

→ At the boundaries, shear mixing 

entrains material from stable zones

Convection and fluid motions

Internal gravity waves

Convective boundary mixing
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Rizzuti et al. (2023)



Evolution of the abundances
16O

24Mg

20Ne

28Si
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Reflecting the 
neon burning 
reactions:

     20Ne(γ,α)16O

        20Ne(α,γ)24Mg

     24Mg(α,γ)28Si



The radial abundance profiles

• We plot horizontally-averaged
abundance profiles

• This way, we can study the 
abundance distribution and 
evolution: start (dashed) to 
end (solid)

• A plateau: the well-mixed 
convective zone

→ a useful way of defining the 
convective boundaries
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Rizzuti et al. (2023)



The transport of species across layers
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• Studying the radial flux
profiles for each species

• Neon consumed: strong 
negative flux (downward)

• O, Mg, Si produced: positive 
fluxes

• Transported inside the 
convective zone by 
turbulent motions

Rizzuti et al. (2023)



Deviations from the spherical symmetry

Abundance variances:

• flat in the convective zone: well-
mixed

• peaks at the boundaries: strong 
mixing

• non-zero central variance: 
deviations from spherical symmetry

→ that’s why we do 3D stellar models
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Rizzuti et al. (2023)



Shell merging: going beyond the onion-
ring model

Do they really occur?

• O, Ne and C-shell mergers have been 
reported for a long time (Rauscher et 
al. 2002; Tur, Heger & Austin 2007) 

Peculiar nucleosynthesis:

• C-O merging shells as source of odd-Z 
elements 31P, 35Cl, 39K, 45Sc (Ritter+18)

• explosive nucleosynthesis across 
merged shells: 𝛾-process 
(Roberti+2023)

3D simulations of a shell-merging event
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Rizzuti et al. (2024), 

in preparation



Towards a 4π setup geometry
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Rizzuti et al. (2024), in preparation

• From 1D MESA model: 20 M⊙, Z⊙
• Nearly-4π geometry: 360° x 90°

• Merging event of C-, Ne- and O-
burning shells

• Nuclear burning with a 12-isotope 
network

• Nominal energy generation (no 
boosting) 

• Formation of one large convective zone

• Very strong dynamical features



Kinetic evolution of the merging shells

20Rizzuti et al. (2024), in preparation

• Three individual shells 
before the merging

• Merging event of C- 
and Ne-burning shells 
at 1200 s

• Sudden rise in kinetic 
energy

• Comparison with the 
1D: no merging with 
the oxygen shell; faster 
timescale



Chemical abundance differences: 1D vs 3D
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Rizzuti et al. (2024), in preparation

• Different location of the convective zones: the 3D structure is different

• Different final mass fractions: the 3D composition is different

Before merging After merging



Transport of species and nucleosynthesis
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Rizzuti et al. (2024), in preparation

• Simplified scenario: positive/negative flux represents production/destruction of species 

• After the merging: only one convective zone, with largely enhanced C- and Ne-burning

Ne-burning

C-burning

Ne-burning

C-burning

Before merging After merging



Deviations from the spherical symmetry
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Rizzuti et al. (2024), in 

preparation

• After the merging, strong 
horizontal dispersion of species 
(even up to 300%)

• Ashes Ne, Mg, Si average 
dispersion 10-30%

• Effect of the very strong 
dynamics

• Different from ‘‘quiet’’ burning 
phases such as Ne-burning 
shell simulations



What remains to be done?

• build a library of 3D burning phases (H-core, He-core…)
• extend the nuclear network (e.g. Si-burning)

• add magnetic fields, rotation…
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Future prospects:

Leidi et al. 2023Varma & Muller 2021



Conclusions

• The interplay between 1D stellar models and 3D hydrodynamical models 
pushes forwards our knowledge of nucleosynthesis and stellar evolution

• Nuclear reactions and chemical abundances can be included and studied
in the 3D simulations

• ‘‘Quiet’’ burning phases (e.g. Ne-burning) can be now studied in 3D 
simulations with nuclear reactions, until fuel exhaustion

• Shell mergers provide a peculiar environment for nucleosynthesis and 
stellar evolution: 3D can help constrain and improve the 1D

For the future: 3D stellar evolution, 3D nuclear astrophysics, non-symmetric
nucleosynthesis, extension to other phases 25
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