Direct and Indirect measurements of ²²Ne(α , γ)²⁶Mg with EAS γ

EXPERIMENTAL STUDY OF ${}^{22}Ne(\alpha,\gamma){}^{26}Mg$ NEAR-THRESHOLD STATES AT LOW ENERGY AND ITS CROSS SECTION FOR NUCLEAR ASTROPHYSICS

Daniela Mercogliano, Andreas Best Unina & INFN-Na daniela.mercogliano@unina.it

stablished by the European Cor

erc

²²Ne(α , γ)²⁶Mg with EAS γ

Outline

Astrophysical Motivation

 22 Ne(α , γ) 26 Mg with EAS γ - Astrophysical motivation

The ${}^{22}Ne(\alpha,\gamma){}^{26}Mg$ reaction is crucial for:

- understanding of isotopic ratios of Mg in AGB atmosphere
- nucleosynthesis of the long lived γ -ray emitter ⁶⁰Fe
- weak s-process in massive stars and the nucleosynthesis beyond Fe

²²Ne(α , γ)²⁶Mg with EAS γ

Outline

State of the art

Astrophysical Motivation

Main experimental challenges:

- High density state of $\rm ^{26}Mg$
- Very low value of energy and cross-section

Do we have satisfying available data?

- No data from direct measurements below 830 keV
- Discrepancies in indirect data
- Γ_{α} known only as UL

²²Ne(α , γ)²⁶Mg with EAS γ

 22 Ne(α , γ) 26 Mg – The EAS γ project

Purpose

Experimental study of ${}^{22}Ne(\alpha, \gamma){}^{26}Mg$ in the energy range of astrophysical interest (600-900) keV

$^{22}Ne(\alpha,\gamma)^{26}Mg$ with EAS γ – Indirect measurement

Study of ²⁶Mg states via ⁷Li(²²Ne,t)²⁶Mg in inverse kinematics near α particle threshold

²⁶Mg excited states will be reconstructed using triple coincidence detection:

- gamma rays
 - heavy recoil
 - light ejectile

$^{22}Ne(\alpha,\gamma)^{26}Mg$ with EAS γ – Indirect measurement

Study of ²⁶Mg states via ⁷Li(²²Ne,t)²⁶Mg in inverse kinematics near α particle threshold

²⁶Mg excited states will be reconstructed using triple coincidence detection:

- gamma rays \rightarrow TIGRESS
 - heavy recoil \rightarrow EMMA+IC
 - light ejectile \rightarrow Si detector

Observable	Level parameter
Kinetic energy of ³ H	Excitation energy of ²⁶ Mg hence resonance energy
Shape of angular distribution	Constraint on spin parity of a level
Absolute value of angular distribution	ANC for bound states and $\boldsymbol{\Gamma}$ for unbound states

22 Ne(α , γ) 26 Mg with EAS γ – Direct measurement

Direct measurement of ${}^{22}Ne(\alpha, \gamma){}^{26}Mg$ in the range 600-900 keV deep underground

 $\eta_{FEP} = 10\%$ for $E_{\gamma} = 4$ MeV

MUR

Simulated signal + Background on surface – unshielded

Simulated signal + Background underground – unshielded

Simulated signal + Background underground – shielded

Simulation:

Underground measurement unshielded vs shielded

²²Ne(α , γ)²⁶Mg with EAS γ – Ex =11171 keV

Does an α cluster state exist at 11171 keV?

Giensen et al.	Not observed
Talwar et al.	observed
Texas A&M low energy	Not observed
Texas A&M high energy	observed

$$\omega \gamma_{11171} = \frac{\Gamma_{\alpha} \Gamma_{\gamma}}{\Gamma_{\gamma} + \Gamma_{\alpha}} \sim \Gamma_{\alpha} \sim 10^{-11} eV \qquad I = 500 \,\mu\text{A}$$

Yield₁₁₁₇₁(UL) = 3.01 · 10⁻²¹ counts/s
$$N_{\gamma} \text{ in 40 days : 33}$$

²²Ne(α , γ)²⁶Mg with EAS γ – Ex =11171 keV

Does an α cluster state exist at 11171 keV?

Giensen et al.	Not observed
Talwar et al.	observed
Texas A&M low energy	Not observed
Texas A&M high energy	observed

$$\omega \gamma_{11171} = \frac{\Gamma_{\alpha} \Gamma_{\gamma}}{\Gamma_{\gamma} + \Gamma_{\alpha}} \sim \Gamma_{\alpha} \sim 10^{-11} eV \qquad I = 500 \,\mu\text{A}$$

Yield₁₁₁₇₁(UL) = 3.01 · 10⁻²¹ counts/s
$$N_{\gamma} \text{ in 40 days : 33}$$

...and no branching information!

²²Ne(α , γ)²⁶Mg with EAS γ – Ex =11171 keV

Does an α cluster state exist at 11171 keV?

- ${}^{22}Ne(\alpha, \gamma){}^{26}Mg$ stellar reaction rate crucial to understand several astrophysical open questions
- But still subjected to large uncertainties
- Difficulties in collecting data below the 830 keV resonance on surface lab due to the background
- EASγ will combine data from indirect and deep underground direct measurement to improve sensitivity
- Synergy with ²²Ne(a,n)²⁵Mg enhances our knowledge on the ²⁶Mg states above the n-threshold

New evaluation of the cross-section in the energy range of astrophysical interest

THANKS FOR THE ATTENTION !

Istituto Nazionale di Fisica Nucleare

