The ¹⁹F(p, α) reaction studied via Trojan Horse Method

Nikola Vukman

Istituto Nazionale di Fisica Nucleare Sezione di Perugia Via A. Pascoli 23c, Perugia, Italy (Ruđer Bošković Institute, Zagreb, Croatia)

nikola.vukman@pg.infn.it

04.03.2024.

Galactic fluorine: stellar production sites

- $^{19}\mathsf{F}$ abundance is very sensitive to physical condition in stars
- stellar production sites: AGB stars, type II supernovae (SNe II), Wolf-Rayet (W-R) stars

Figure 1: Temporal evolution of the internal structure of an AGB star [1] shows complex reaction network dependant on the physical condition in stars, which proceed throught radiative burning in H-shell and convective burning in He-shell via *thermal pulses*. Degenerative core is made of carbon and oxygen.

¹⁹F - complex production network in **AGB** stars:

- production through series of p,n, $lpha,\gamma$ reactions with 14,15 N and 13 C in H-rich environment
- main destruction channels are (α, p) in He-burning shell and (p, α) & (p, γ) in H-burning shell

[1] S. Palmerini et al. (2019) J.Phys.Conf.Ser.1308, 012016 and ref. therein

Galactic fluorine: direct vs. indirect measurements

Figure 2: left+middle:(direct data) **A** Guardo et al. (2023) measurement of ${}^{19}F(p,\alpha_0){}^{16}O$ channel, **B** Lombardo et al. (2019) measurement of ${}^{19}F(p,\alpha_{\pi}){}^{16}O$ channel, **C** Zhang et al. (2021) measurement of ${}^{19}F(p,\alpha_{\gamma}){}^{16}O$ channel, right:(THM data) **D** Indelicato et al. (2017) measurement of ${}^{19}F(p,\alpha_0){}^{16}O$ channel (up), overlapped with La Cognata et al. (2015) results (down).

[B] Guardo, G.L. et al. (2023) E.P.J.A, 59:65, [B] Lombardo, I. et al. (2019) P.R.C 100, 044307, [C] Zhang, L. et al. (2021) P.R.L.127, 152702, [Da], Indelicato, I. et al. (2017), ApJ 845, 19 [Db] La Cognata, M. et al. (2015), ApJ 805, 805:128 (7pp)

Experiment at INFN-LNS in Catania

Measurement:

performed at INFN-LNS (Catania)
6 × silicon Position Sensitive Detectors
2 × Ionization Chambers filled with Isobutane gas at ~52.5mbar

Ingredients:

- ¹⁹F beam (55MeV)
- CD₂ target ($\sim 100 \ \mu {
 m g/cm^2}$)

- ²H used as **THM nucleus** due to $p \otimes n$ cluster structure (*I=0*, $p_s \propto 0$)

Method:

- selection of the proper $\underline{quasi-free}$ contribution of the $^{19}F(d,\alpha^{16}O)n$ reaction to measure $^{19}F(p,\alpha)^{16}O$ reaction

Figure 3: Experimental setup used at INFN-LNS for complete kinematic measurement of the ${}^{19}F(d,\alpha{}^{16}O)n$ reaction optimised for QF conditions.

<u>ANALYSIS:</u> <u>N.V.</u> (a1o4 & o1a4), <u>X.Su</u> (a2o4) and G.G.Rapisarda (o1a5)

Experiment at INFN-LNS in Catania

Measurement:

- performed at INFN-LNS (Catania)
 6 × silicon Position Sensitive Detectors
- 2 \times lonization Chambers filled with Isobutane gas at ${\sim} \textbf{52.5mbar}$

Ingredients:

- ¹⁹F beam (55MeV)
- CD₂ target ($\sim 100 \ \mu {
 m g/cm^2}$)

- ²H used as **THM nucleus** due to $p \otimes n$ cluster structure (*I=0*, $p_s \propto 0$)

Method:

- selection of the proper <u>quasi-free</u> contribution of the $^{19}\mathsf{F}(\mathsf{d},\alpha^{16}\mathsf{O})\mathsf{n}$ reaction to measure $^{19}\mathsf{F}(\mathsf{p},\alpha)^{16}\mathsf{O}$ reaction

Figure 4: Schematic diagram of the ¹⁹F(d, α^{16} O)n **QF** reaction. The upper vertex describes the virtual decay of the THM-nucleus ²H into the participant **p** and spectator **n**, while the ¹⁹F(p, α)¹⁶O reaction that takes place in the lower vertex.

Experimental details: PSD energy & position signal

Figure 5: Position vs. Energy spectrum of the (PSD) detector for the ²²⁸Th α -source with 16 position grids used for calibration of the detector.

CALIBRATION PROCEDURE

16 individual **P/E** peaks for each α and elastics (¹⁹⁷Au,¹²C) beam energy $\rightarrow \underline{\text{one}} \mathbf{a}(\theta)$ and $\mathbf{b}(\theta)$ set of calibration parameters for **E/P** per detector

Experimental details: PSD+IC calibration

theta : energy (det1)

Figure 6: Theta vs. Energy spectrum of the (**PSD**) detector for the ²²⁸Th $\underline{\alpha}$ -source and elastics (E_{16O}=55,45,37,30 MeV) on ¹⁹⁷Au target. Elastic scattering on ¹²C target omitted here, but was used in the calibration of PSD's.

Experimental details: data (reaction products) selection

de1(IC) : e1 (PSD)

Figure 7: ΔE vs. **E** spectrum with graphical cut to select ¹⁶**O** in detector-1. With the "gate" on ¹⁶**O**, α was selected in detector-4. For detectors 2 & 5 α 's were selected via kinematical conditions (X.Su - *Russbach'18* and G.G.R. analysis).

Experimental details: calibration vs. calculation for dE

Figure 8: (left) Comparison spectrum for ΔE - IC4 (X_{length}=50mm, isobutane gas at ~52.5 mbar) for ¹⁶O energy loss calculated with SRIM (x) vs. calibration (y). (right) Calculation in SRIM for dE/dx in isobutane gas at 52.5 mbar ($\rho \propto P$).

 \circ for final results calibrated value was used for $^{16}{\rm O}$ and calculated for $^{4}{\rm He}$ \circ

Analysis: identification of the exit channel

Figure 9: (left) The "Romano" plot [\otimes] correlates COE and COM without assumption of the exit channel, which can be identified via slope of the data locus for undetected nucleus ~ $1/A_3$. The intercept on the y-axis indicates -Q value.(right) Relative energy "e12" of detected pair of nuclei ($^{16}O + \alpha$) versus the momentum of the spectator "ps" (n) for 3-body quasi-free reaction. (*note*) No channel-ID cuts on these plots, so $\alpha_0, \alpha_{1,2}, \alpha_{3,4}$ are all present.

 $e12\propto f(E_1,\theta_1,E_2,\theta_2),$ straight line locus in $e12\sim$ resonance in compound nucleus (^{20}Ne) [\otimes] Costanzo, E. et al. (1990) N.I.M.A, 295, 373

Analysis: identification of the exit channel

• THM reaction of interest:

$$\label{eq:reaction} \begin{array}{c} {}^{19}\mathsf{F}+\mathsf{d} \rightarrow {}^{20}\mathsf{Ne}^*+\mathsf{n}_s \rightarrow ({}^{16}\mathsf{O}+\alpha_{0,1,2,3,4})_{\mathsf{detected}}+\mathsf{n}_s \\ \text{o} \ \text{reaction proceeds through the ground state of } {}^5\mathsf{He:} \\ {}^{19}\mathsf{F}+\mathsf{d} \rightarrow {}^{16}\mathsf{O}+{}^5\mathsf{He} \rightarrow ({}^{16}\mathsf{O}+\alpha)_{\mathsf{detected}}+\mathsf{n}_s \\ \text{o} \ \propto 1\% \ \text{of } {}^1\mathsf{H} \ \text{in } \mathsf{CD}_2 \ \text{target} \ \text{-} \ \text{2-body reactions} \\ \end{array}$$

Analysis: QC of the data :: 2-body reactions

Figure 10: left: Excitation energy of the ¹⁶O, calculated from the (E,θ) of detected α . right: Excitation energy of the ⁵He, calculated from the (E,θ) of detected ¹⁶O nuclei. Both data are coming from α +¹⁶O coincidences in front detectors: 1+4.

for B(T,a)x reaction, Ex(x) \propto f(Q,E_a, θ_a)

Analysis: QC of the data :: α_0 channel

Figure 11: Excitation energy of the ²⁰Ne nucleus from the ¹⁹F(d, ¹⁶O α)n reaction. left: a1o4 coincidence, right: o1a4 coincidence.

 $Ex(^{20}Ne) = E12_{relative energy} + E_{decay treshold}$; for ^{20}Ne tresholds are 4.73 MeV for α_0 , while it's 4.73+6.05 MeV for α_1 , 4.73+6.13 MeV for α_2 ...

Analysis: comparison with MC simulations :: $\alpha_{1,2}$ channel

Figure 12: Comparison of the relevant distributions for **a1o4 data** and realistic **MC simulations** (*phase space*). Good agreement among the two is particularly important for the θ_{CM} and **ps** (*momentum of the spectator*) distributions.

Results: $\alpha_{1,2}$ channel

Thank you for the attention!

specual thanks to the working group

Xuedou Su^{3,4}, Giuseppe Gabriele Rapisarda^{5,6}, Marco La Cognata⁵, Marco Mazzocco^{7,4}, Sara Palmerini^{1,8},

collaborators who ran the experiment

Iolanda Indelicato^{5,6}, Silvio Cherubini^{5,6}, Giovanni Luca Guardo⁵, Marisa Gulino^{5,9}, Seiya Hayakawa¹⁰, Livio Lamia^{5,6}, Gianluca Rosario Pizzone^{5,6}, Stefano Romano^{5,6}, Claudio Spitaleri^{5,6}, Oscar Trippella^{1,8}, Aurora Tumino^{5,9}

¹ INFN - Sezione di Perugia, Perugia, Italy, ² Ruder Boskovic Institute, Zagreb, Croatia, ³ Beihang University, Beijing, China, ⁴ University of Padova, Padova, Italy, ⁵ INFN - Laboratori Nazionali del Sud, Catania, Italy, ⁶ University of Catania, Catania, Italy, ⁷ INFN - Sezione di Padova, Padova, Italy, ⁸ University of Perugia, Perugia, Italy, ⁹ Kore University of Enna, Enna, Italy, ¹⁰ CNS - University of Tokyo, Tokyo, Japan

and ASFIN nuclear astrophysics group

<u>Nikola Vukman</u>^{1,2} nikola.vukman@pg.infn.it