
 25th APART Anniversary Meeting

Monday 12 February 2024 - Thursday 15 February 2024

University Center Obergurgl

Program

 25th APART Anniversary Meeting / Program Monday 23 June 2025

 25th APART Anniversary Meeting / Program

Page 2

Monday 23 June 2025

Monday, February 12, 2024

37 years of Performance Tools Development: Success Stories
and Failures

Bernd Mohr
Jülich Supercomputing Centre

I created my first performance tool for parallel systems as part of my master thesis at the
Friedrich-Alexander University Erlangen-Nuremberg, Bavaria in 1987. Since then, I never changed
my research topic and was involved in the development of many HPC performance tools:
TDL/POET, ZM4, SIMPLE, TAU, Vampir, EPILOG, KOJAK, Score-P, and Scalasca. The talk will
highlight successes and failures of the different tools and will provide a personal assessment of the
state of HPC performance tools.

[Video recording] [Slides]

Tracing Performance Tools Back 25 Years
Felix Wolf
Technische Universität Darmstadt

In this talk, I will review performance tools I have contributed to, from the trace-analysis tool KOJAK
to its scalable successor Scalasca and from the performance measurement infrastructure Score-P
to the performance modeling tool Extra-P. Finally, I will introduce FTIO, a recently developed tool
that identifies the frequency of periodic I/O online in I/O traces - with applications in I/O scheduling.

[Video recording] [Slides]

Lessons learnt from 15+ years of VI-HPS & POP CoE training
Brian Wylie
Jülich Supercomputing Centre

Over more than fifteen years, an international consortium of tools developers have worked closely
together in the Virtual Institute High Productivity Supercomputing (VI-HPS), collaborating on tools
development and integration, latterly augmented by the Performance Optimisation and Productivity
Centre of Excellence (POP CoE) which created a universal parallel performance assessment and
improvement methodology focused on application execution efficiency and scalability. This was
complemented with associated training and coaching of application developers (often in teams) for
productive use of the portfolio of tools, which will be reviewed and lessons learnt discussed.

 25th APART Anniversary Meeting / Program

Page 3

Monday 23 June 2025

[Video recording] [Slides]

Tuesday, February 13, 2024

Binary Code Patching: An Ancient Art Refined for the 21st
Century

Barton Miller
University of Wisconsin-Madison

Patching binary code dates back to some of the earliest computer systems. Binary code patching
allows access to a program without having access to the source code, obviating the need to
recompile, re-link, and, in the dynamic case, re-execute.

In the early days, it was a bold technique used by serious programmers to avoid the long
recompile/reassemble and link steps. Code patching required an intimate knowledge of the
instruction set and its binary representation. Great advances have been made in simplifying the use
of code patching, making it less error prone and more flexible. "Binary rewriters" were a great
advance in the technology for modifying a binary before its execution. Early tools, such as OM,
EEL, and Vulcan, enabled the building of tools for tracing, simulation, testing, and sandboxing.

Moving beyond static patching, we developed "dynamic instrumentation", the ability to patch code
into a running program. Dynamic instrumentation provided the ability to adapt the code to the
immediate need, dynamically control overhead costs. We applied this technology to both user
programs and operating system kernels producing the Dyninst and Kerninst tool kits. This
technology formed the foundation of the Paradyn Performance Tools.

Dynamic code patching continued to get more aggressive. We developed "self-propelled
instrumentation", which inserts instrumentation code that propagates itself along the program's
control flow as the program executes. At its best, this technique can provide very low overhead,
detailed instrumentation in support of fault isolation and identification of intermittent performance
issues.

More recently, we have addressed a wide variety of issues related to binary code patching including
analyzing and patching defensive and obfuscated malware, parallelizing the binary code parsing
process to quickly patch huge (GB+) binaries, and efficient analysis and instrumentation of GPU
binaries.

Key to both static and dynamic patching are the interfaces. There is a difficult balance between
providing an interface that abstracts the details of the code, often using control- and data-flow
graphs and instruction categories, and an interface that exposes the details of the instruction set.

 25th APART Anniversary Meeting / Program

Page 4

Monday 23 June 2025

Our primary interface is based on editing of the control flow graph, based on an editing algebra that
is closed under valid control flow graphs.

In this talk, I will discuss the development of code patching over the years, with examples from the
various technologies (including our tools) and present results from our latest work in selfpropelled
instrumentation. I will also discuss interface abstractions and our work towards the goal of
multi-platform interfaces and tools.

[Video recording] [Slides]

On using modern C++ and nested recursive task parallelism
for HPC applications with AllScale

Thomas Fahringer
University of Innsbruck

On using modern C++ and nested recursive task parallelism for HPC applications with AllScale
Contemporary parallel programming approaches often rely on well-established parallel libraries
and/or language extensions to address specific HW resources that can lead to mixed parallel
programming paradigms. In contrast to these approaches, AllScale proposes a C++
template-based approach to ease the development of scalable and efficient general-purpose
parallel applications. Applications utilize a pool of parallel primitives and data structures for building
solutions to their domain-specific problems. HPC experts who provision high level, generic
operators and data structures for common use cases, design these parallel primitives. The
supported set of constructs may range from ordinary parallel loops, over stencil and distributed
graph operations as well as frequently utilized data structures including (adaptive) multidimensional
grids, trees, and irregular meshes, to combinations of data structures and operations like entire
linear algebra libraries. This set of parallel primitives is implemented using pure C++ and may be
freely extended by third party developers, similar to conventional libraries in C++ development
projects. One of the peculiarities of AllScale is its main source of parallelism that is based on nested
recursive task parallelism. Sophisticated compiler analysis determines the data needed for every
task which is of paramount importance to achieve performance across a variety of parallel
architectures. Experimental results for several applications implemented with AllScale will be
shown.

[Video recording] [Slides]

Towards Automatic Generation of Performance Models for
Dynamic Tuning using Machine Learning

Eduardo Cesar
Universitat Autonoma de Barcelona

Incorporating machine learning into automatic performance analysis and tuning tools is a promising
approach for addressing the increasing heterogeneity of current High-Performance Computing

 25th APART Anniversary Meeting / Program

Page 5

Monday 23 June 2025

(HPC) applications. Our fundamental hypothesis posits that hardware performance counters
effectively characterize parallel regions on multicore CPUs and GPUs.

We propose creating a dataset with the values of the most relevant hardware counters obtained
from the execution of representative regions. This dataset will then be utilized to train a
machine-learning model capable of determining near-optimal values for a set of tuning parameters
applicable to any parallel region.

For fulfilling this objective, we must be able to 1) Identify the minimum set of hardware counters for
classifying a region; 2) Develop methodologies for recognizing new parallel region patterns and
configuring executions to build the dataset for a given architecture; 3) Determine the essential
hardware counters needed to optimize tuning parameters.

In this talk I will summarize some of the successes, some of the failures, and some of the
challenges we have faced over several years of pursuing this research, providing insights into the
integration of machine learning with performance analysis and tuning tools in the context of HPC
applications.

[Video recording] [Slides]

Wednesday, February 14, 2024

Managing the Cloud Edge Continuum: The Serverless IoT
Framework

Michael Gerndt
Technical University of Munich

Serverless computing in the cloud offers application developers to concentrate on the cloud
application without cloud VM management. TUM extended the concept of serverless computing to
heterogeneous environments in the Function Delivery Network (FDN). Ongoing works, integrate the
FDN and IoT in the Serverless IoT Framework offering function invocation optimization in time and
space for performance, costs, and energy consumption across IoT devices, edge and cloud FaaS
platforms.

[Video recording] [Slides]

MPIWasm: Executing WebAssembly on HPC Systems
Mohak Chadha
Technical University of Munich

 25th APART Anniversary Meeting / Program

Page 6

Monday 23 June 2025

MPIWasm is a Wasm runtime that enables the execution of applications that utilize the Message
Passing Interface (MPI) standard on HPC systems. It builds on Wasmer and supports the execution
of MPI-based HPC application modules on both x86_64 and aarch64 processor architectures. To
facilitate its adoption and suitability in HPC environments, it supports the high-performance
execution of HPC application modules and has low overhead for MPI calls throughzero-copy
memory operations. The former is achieved by leveraging the LLVM compiler for translating Wasm
instructions to native machine code AoT, while the latter is achieved by transparently translating
between the host and the Wasm module's linear memory address space. In addition, MPIWasm
supports high-performance networking interconnects such as Infiniband that are used by MPI
libraries for inter-rank communication by linking against the host MPI library at runtime and
providing a translation layer between the Wasm modules and the host library. Our experiments on a
production HPC system demonstrate that MPIWasm delivers competitive native application
performance.

[Slides]

Bitwise Reproducibility in Computational Climate Science
Thomas Ludwig
Deutsches Klimarechenzentrum

In recent years we observe much discussion about the issue of reproducibility. Triggered by
observations about non-reproducible results in social and medical sciences the topic gained
momentum in simulation sciences that use high performance computing. The talk will concentrate
on observations and practices in computational climate science. It will focus on lower levels ob
abstraction like parallel hardware and parallel programming.

[Video recording] [Slides]

Quantum Computing: It is a Software Challenge, too!
Martin Schulz
Technical University of Munich

As Quantum Computing systems mature and make their way out of laboratories into production
computing environments, we also must rethink the needed software environments. For one, we
must transition from supporting individual physics researchers who are experts in quantum science
to a wide range of user communities in the various science disciplines wanting to use the power of
quantum computing; at the same time we also must ensure a proper integration into workflows,
schedulers, and system software environments used in existing compute environments without
which a quantum system will not be practically usable. This talk will highlight the issues associated
with this transition and will introduce the Munich Quantum Software Stack, developed as part of the
Munich Quantum Valley (MQV) initiative, with which we tackle these challenges for the upcoming
quantum systems hosted at LRZ.

 25th APART Anniversary Meeting / Program

Page 7

Monday 23 June 2025

[Video recording] [Slides]

Thursday, February 15, 2024

Novel Methodology for Application Performance Modelling and
Evaluation

Vladimir Getov
University of Westminster

Computer simulation of physical real-world phenomena emerged with the invention of electronic
digital computing and has been increasingly adopted as one of the most successful modern
methods for scientific discovery. Arguably, the main reasons for this success have been the rapid
development of novel computer technologies that has led to the creation of powerful
supercomputers, large distributed systems, high-performance computing frameworks with access
to huge data sets, and high throughput communications. In addition, unique and sophisticated
scientific instruments and facilities, such as giant electronic microscopes, nuclear physics
accelerators, or sophisticated equipment for medical imaging are becoming integral parts of those
complex computing infrastructures. Subsequently, the term ‘e-science’ was quickly embraced by
the professional community to capture these new revolutionary methods for scientific discovery via
computer simulations of physical systems. The relevant application codes are typically based on
finite-element algorithms, while the computations constitute heavy workloads that conventionally
are dominated by floating-point arithmetic. Examples include application areas such as climate
modeling, plasma physics (fusion), medical imaging, fluid flow, and thermo-evolution.

Over the years, most of the relevant benchmarking projects have covered predominantly dense
physical system simulations, in which high computational intensity carries over when parallel
implementations are built to solve bigger problems faster. Since emphasis was on dense problems,
this approach resulted in systems with increasing computational performance and was the
presumption behind the introduction of the very popular semi-annual Top 500 rankings of
supercomputers. However, in the last 10-15 years many new applications with very high economic
potential have emerged — such as big data analytics, machine learning, real-time feature
recognition, recommendation systems, and even physical simulations — that feature irregular or
dynamic solution grids. These applications spend much more of their computation in
non-floating-point operations such as address computations and comparisons, with addresses that
are no longer very regular or cache-friendly. The computational intensity of such programs is far
less than for dense kernels, and the result is that for many real codes today, even those in
traditional scientific cases, the efficiency of the floating-point units that have become the focal point
of modern core architectures has dropped from the >90% to <5%. This emergence of applications
with data-intensive characteristics — e.g. with execution times dominated by data access and data
movement — has been recognized recently as the “3rd Locality Wall” for advances in computer
architecture.

To highlight the inefficiencies described above, and to identify architectures which may be more
efficient, a new benchmark called HPCG (High Performance Conjugate Gradient) was introduced
several years ago. HPCG also solves Ax=B problems, but where A is a very sparse matrix so that,
on evaluated systems, floating-point efficiency mirrors that seen in full scientific codes. Recent

 25th APART Anniversary Meeting / Program

Page 8

Monday 23 June 2025

detailed analysis confirms that HPCG performance in terms of useful floating-point operations is
dominated by memory bandwidth to the extent that the number of cores and their floating-point
capabilities are irrelevant. Therefore, our selected benchmark codes that cover the “Physical
System Simulations” application area of interest are the High-Performance LINPACK (HPL) and the
HPCG. Both are very popular codes with very good regularity of results in recent years. Our
approach is to explore a 3-dimensional space — dense systems performance, sparse systems
performance, and energy efficiency for both cases. With HPL as the representative of dense
system performance and HPCG as the representative for sparse systems performance, the
available benchmarking results provide excellent opportunities for comparisons and interpretation,
as well as lay out a relatively well-balanced overall picture of the whole application domain for
physical system simulations.

[Video recording] [Slides]

SUIT: Secure Undervolting with Instruction Traps
Frank Mueller
North Carolina State University

SUIT presents a novel hardware-software co-design to reduce the safety margin substantially
without compromising reliability or security. By enhancing hardware to trap on infrequent
instructions consuming high power, we develop a novel OS/runtime mechanism transparent to the
user that dynamically switches power regimes in response to instruction needs. We show that this
technique results in energy savings at minimal performance cost on average and occasionally even
performance improvements.

[Slides]

Celerity - Distributed-memory Accelerator Programming Made
Easier

Philipp Gschwandtner
University of Innsbruck

While domain-specific HPC software packages continue to thrive and are vital to many scientific
communities, a general purpose high-productivity GPU cluster programming model that facilitates
experimentation for non-experts remains elusive

Celerity, a combined API and task-based runtime system for programming distributed-memory
GPU-based HPC hardware platforms, seeks to provide the means to scale C++ applications to
distributed-memory accelerator clusters with relative ease by leveraging the SYCL domain-specific
embedded language. By providing information about the logical and spatial buffer access behavior
of kernels, users enable the Celerity runtime system to automatically split work across multiple
GPUs. Encoded in an execution graph, correctness of the distributed program is ensured by
tracking kernel data dependencies and issuing data transfers when required. This flexible design
facilitates the effective utilization of hardware resources without the need for manual scheduling.

 25th APART Anniversary Meeting / Program

Page 9

Monday 23 June 2025

To further increase productivity, Celerity provides an easy-to-use API intended to offer frequently
encountered higher-order parallel programming patterns such as reductions, stencils and parallel
I/O. A fully functional implementation is developed and maintained at the University of Innsbruck,
currently used for porting benchmarks and applications. This talk will present the Celerity concept,
current results and ongoing research.

[Slides]

