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Early Projects, Tools, and Environments

 GENESIS project (1989 — 1992) — SUPRENUM computer, PARMACS
message passing, Meiko CS2

* GENESIS parallel benchmarks (1989 — 1994)

* PPPE — Portable Parallel Programming Environments, HPF-like
programming environments, ParaGraph monitoring and visualisation
(1992 — 1994)

* PVM + PARMACS = MPI-1 (1992)
 PARKBENCH committee and codes (1994 — 1997)
e RAPS benchmarks -> Pallas benchmarks -> Intel benchmarks -> ...



ParaGraph (1992) based on PICL — M.T. Heath
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Outline

e [RDS: Overview and Structure
* International Focus Teams and Key Roadmap Elements

* |Interaction Between Applications Benchmarking and Systems and
Architecture IFTs

* Selection of Representative Application Domains — Market Drivers
* Critical Issues and Tradoffs — Moore's ‘Law’
* Example: Physical System Simulations

* Key Messages
* New Technology Requirements
* Breakthroughs in Technology, Research

* Appendix:
* Team Members
* Collaborative Alignments
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Roadmap Visions Through the Years

The International
Roadmap for
Semiconductors (ITRS) and
its evolution to the
International Roadmap for
Devices and Systems
(IRDS) provided leadership
and continues to play a key
role in guiding design and
implementation of devices
and systemes.
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IFT structure of the
International Roadmap for Devices and Systems (IRDS)
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IRDS: Key Roadmap Elements - https://irds.ieee.org/

To achieve its goals, each IFT assesses how their technology could evolve and identifies the
following:

Difficult Challenges and Showstoppers
* Top 5 Challenges for Near-term and Top 5 challenges for Long-term

Technology Requirements Guidelines

* Annualized tables show technology needs and level of difficulty and where gaps in solutions may
occur

Potential Solutions Guidelines

* |FTs review solutions for assessed needs

* The potential solutions chart indicates maturity of a particular solution

* |FTs do not select only one solution; but instead include areas for innovative answers
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Interaction Between AB and SA IFTs

. Apﬁlications Benchmarking (AB) brings the critical understanding of
“what do we now and what will we need to be able to compute?

» Systems and Architectures (SA) brings the boundary conditions of “what
are the space, weight, power, privacy, security and sustainability criteria at
each design envelope from the edge device to the Exascale data center?”

* Four System Categories:
e Data Center (Hyperscale and HPC)
* CPS
* Personal Augmentation
* |oTe

* Eleven Design Envelopes
e uW to MW
e mm to km
* mg to metric tons
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Applications Benchmarking Highlights and
Emerging Applications

. The electronics industry in general, and the computer industry in
particular is driven by application domains

- Emerging applications require new technologies thus defining
roadmap trajectories — e.g. personal augmentation, Al, autonomy
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Systems and Architectures Scope — Market Drivers

« Cloud: This category is for server devices deployed in data centers. The term “cloud” refers
to the engineering of data center scale computing operations: compute, storage, networking
engineered for scale and for continuous resource redeployment and reconfiguration via
APIs.

* Internet-of-Things edge devices (IoT-e): Although loT is a broad class if computing
applications spanning the server to the ultimate sensors and actuators, an loT edge (loTe)
device Is a wireless device with computation, sensing, communication, and possibly storage.

* Cyber-Physical Systems (CPS): This category encompasses computer-based control of
physical devices characterized by real-time processing and used primarily in industrial
control. Many cyber-physical systems are safety-critical.

« Personal Augmentation (PA): Personal augmentation devices provide multiple use cases:
telephony and video telephony; multimedia viewing; photography and videography; email
and electronic communication; positioning and mapping, authenticated financial
transactions, health and fitness monitoring, personal safety and environmental warning.
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Technology and/or Research Breakthroughs:
Application Areas

NEW <

IEEE IEEE w
Someuter ) IEEE rgbooting &

Application Area

Description

Graph Analytics

Applications of graph algorithms to large static or dynamic graphs

Artificial Intelligence

Modern artificial intelligence applications with emphasis on machine learning approaches. Graphical
dynamic moving image (movie) recognition of a class of targets (e.g.. face, car). This can include
neuromorphic / deep learning approaches such as DNNs.

Discrete Event Simulation

Large discrete event simulation of a discretized-time system. (e.g.. large computer system simulation)
Generally used to model engineered systems. Computation is integer-based.

Physical System

Simulation of physical real-world phenomena. Typically, finite-element based. Examples are fluid flow,

Simulation weather prediction, thermo-evolution. Computation is floating-point-based, includes mixed precision.
Optimization Integer NP-hard optimization problems, often solved with near-optimal approximation techniques.
Graphics/VR/AR Large scale. real-time photorealistic rendering driven by physical world models. Examples include

interactive gaming. Augmented Reality, Virtual Reality.

Cryptographic codec

Cryptographic encoding and decoding, including specialized hardware acceleration

Video codec

Encoding, transcoding of video. AOM AV-1

Autonomy Autonomous route planning. motion planning, navigation, end-to-end control
ML for Science Use of machine learning techniques for scientific exploration (eg, graph NNs)
loT Applications that run at [oT edge or in the fog
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IRDS AB IFT Cross-team Alignments
https://irds.ieee.org/editions/2023

* Since the inception of IRDS in 2016, the Applications Benchmarking
effort has been positioned as a “top end” to the roadmap. Its mission
is to identify key application drivers and to track and roadmap their
performance.

* The mission of the Applications Benchmarking IFT is to identify key
application drivers, and to track and roadmap the performance of
these applications for the next 15 years. Given a list of market drivers
from the Systems and Architectures International Focus Team (SA
IFT), AB IFT generates a cross matrix map showing which
application(s) are important or critical (gating) for each market.
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Cross Matrix: Application Areas vs. Market Drivers
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Application Area Cloud | IoTe Chs PA
Graph Analytics X ¥ 4 g
Artificial Intelligence X Y ¥ X
Physical System Simulation Y X i
Cryptography Y ¥ Y Y
Video codec il X il
Machine Learning for Science X

Internet of Things Applications Y i Y
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Current Critical Issues

. Technology constraints on applications have remained
relatively constant since last edition of roadmap

.Software ecosystem changes impact application performance

- Ex: changes in software stack and application profiles for Artificial
Intelligence

-Memory performance is critical for all application areas
.Stall in technology power efficiency leading to specialization

-Continuing challenge: some application areas, although
highly important, remain difficult to track quantitatively
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Background: Moore’s ‘Law’

« At the inaugural Int. Solid-State Circuits Conference at
the University of Pennsylvania in 1960, a young
computer engineer named Douglas Engelbart introduced
the computing industry to the remarkably simple but
ground-breaking concept of “scaling.”

* Another young engineer — Gordon Moore —was in the
audience. In 1965, Dr Moore sketched out his prediction
of the development pace of silicon technology. Moore's
law describes a long-term trend in computing hardware.
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Gordon Moore’s Original Sketch

Ay It states that “the number
] = of components that can
e \U be placed inexpensively
1) ? on an integrated circuit
} a < doubles apprOX|mater
T % every two years.
3 ﬂm%WWW@J{ BF
R o

G. E. Moore, “Cramming more components onto integrated
circuits”, Electronics, vol. 38(8), pp. 114-117, April 1965.
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Moore’s Law for Clock Rate
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26 July 2000: Intel Predicts 10GHz Chips by
2011 - ?!

“Intel is predicting that its microprocessors will hit
10GHz clock rate by 2011.”

/DNet

Has this prediction worked as before?

NO!

\
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Is Moore’s ‘Law’ going to end and what are
we going to do then?

* It sounds scary —when?!?
 What does it currently state?

* “The number of people predicting
the death of Moore’s law doubles every two years

- Peter Lee, VP Microsoft Research, March 2016.

e Robert H. Dennard’s scaling (1974) stopped working
nearly 20 years ago.

I”

* Subsequently, we entered a new era of dark silicon,
multithreading and energy consumption challenges.

\
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Dennard’s Scaling

* “As the dimensions of a device go down, so does power
consumption. Smaller transistors run faster, use less power,
and cost less.”

* |s this true nowadays? — NO!

* Why? — leakage, negligible before, approached the same order
of magnitude as the chip’s dynamic power.

* While feature sizes have continued to shrink, threshold voltage
has not since switching a transistor at a lower threshold
voltage needs a thinner gate dielectric, but leakage places a
lower bound on dielectric thickness.
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Dark Silicon

* The failure of Dennard’s scaling has introduced a new
era of plenty of transistors, but not enough power.

* If the number of transistors doubles, the power
available for each transistor is cut in half —e.g. only
half the number of transistors can operate at the same
time.

* Calculating the energy consumption of a generic chip is
difficult. It depends on a wide range of factors.

IEEE w . . .
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When Do We Need New Architectures?

|”

* When we hit a “wall” for some important class of

applications

e 1st Wall — Mid 90s: the Memory Wall — much faster
processor speed

 2nd Wall — 2004: the Power Wall - the failure of
Dennard scaling, emergence of dark silicon

* 3rd Wall — Now: the Locality Wall - The data locality we
expect from our apps is disappearing
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Moore's ‘Law’ Nowadays

* Still WORKS according to the IEEE IRDS roadmap

* Limits — “power wall” challenges
— Power dissipation of air-cooled chip
— Little ILP left to exploit efficiently
— Almost unchanged memory latency

* In 2004 Intel cancelled HPC uniprocessor projects
— Thread and data level parallelism
— In comparison to ILP, need programmer input

* Modern processors - multicore and manycore, accelerators, GPUs
and FPGAs, Air vs liquid cooling
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Critical Tradeoffs Among Computer Architectures

< Flexibility —

CPU GPU @ FPGA

Efficiency
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Current Key Messages

-Reduced device efficiencies have resulted in plateaus in
application power vs. performance

-Specialization (e.g., FPGA, ASIC) is the preferred solution for
increased efficiency for most application domains

-Memory bandwidth is the most critical technology need across
all domains

-IRDS / IEEE relies on external parties for benchmarking, and
benchmarking changes impact our ability to track performance
and efficiency

- In the future: IRDS / IEEE standardization and control of benchmarking
for the roadmap

© Vladimir Getov - all rights reserved
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New or Expanded Technology Requirements

Improvement Paths
Algorithmic Memory Memory Network Fixed-function
Application Area improvement bandwidth latency bandwidth acceleration
Graph Analytics X X X
Al't.lﬁcml X X X
Intelligence
Dlscr.ete Ev.ent X X
Simulation
Ph}fsmfal S}fst.em X X X X X
Simulation
Optimization X X X
Graphics/VR/AR X X X
Cryptographic X X
codec
Video codec X X X X
Autonomy X X X X X
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Example: Physical System Simulations

* Computer simulation of physical real-world phenomena
emerged with the invention of electronic digital
computing

* Led to the creation of supercomputers; large distributed

systems; access to huge data sets, and high throughput
communications

* Subsequently, the term ‘e-science’ was adopted to
capture these new revolutionary methods for scientific

discovery
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Major Benchmarking Efforts in the Last 35 Years

 The NAS Parallel Benchmarks (NPB)

* The GENESIS Distributed-Memory Benchmarks
 The PARKBENCH International Benchmarks

* SPEComp2001 - All major machine vendors

 Another more recent “pencil and paper” parallel
benchmark suite is the Dwarfs Mine based on the
initial “Seven Dwarfs” proposal

\
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Benchmarking Methodology

* These benchmarking projects mentioned above cover
predominantly legacy dense applications with high
computational intensity

e Current application domains are different and cover a
wider spectrum

* The hierarchical benchmarking approach has been
attractive, but we now know that it is practically not
achievable
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Selected Benchmarks

* Two popular codes with good regularity of results
covering different types of systems

* HPL — dense systems
* HPCG — sparse systems

 The earliest results for HPCG are from June 2014 while
HPL results available for 25 years

* Updates published twice per year —Jun and Nov
e Using the average 10 best performance results
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PHYSICAL SYSTEM SIMULATION

HPL (dense) vs HPCG (sparse) results HPL (dense) vs HPCG (sparse) fraction of
peak performance
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=@==HPL 11.16 11.20 11.40 11.84 20.63 22.62 23.60 25.26 45.08 50.81 52.02 52.02 94.26 102.8/107.0 108.3 227.4
HPCG 0.18 0.20 0.22 0.23 0.30 0.35 0.39 0.43 0.85 0.85 0.85 0.82 2.20 2.71 2.88 2.88 3.00
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Gap between HPL and HPCG relatively constant over time, result of inadequate memory latency
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PHYSICAL SYSTEM SIMULATION

Technology needs

HPL (dense) vs HPCG (sparse) energy
efficiency results in Gflop/s/W

. Reduce data movement or
Improve memory access
costs

10

. Improve FP arithmetic
efficiency

. Reduce power consumption: /\—_/J
energy monitoring and

tuning, Increase 0.01
1 t t t 1 Green 3.14 3.91 4.85 4.55 4.82 5.72 1096 13.75 1416 13.54 13.81 | 14.72 16.86 20.54
I n S r u m e n a I O n 2.069 | 2.026 1938 2428 3319 3.436 4.812 6.822 7.18 8.634 8634 9.523 10.99

HPL 1.88
—@=—HPCG 0.03 0.042 0.037 0.04 0.039 0.054 0.072 0.102 | 0.165 0.161 @ 0.154 0.177 0.195 0.225

Average (10 best) Energy Efficiency
Gflop/s/W
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Analysis and Technology Needs: Memory

* Higher bandwidth and lower latency for accessing and
moving data — both locally (memory systems) and
remotely (interconnection networks).

* High Bandwidth Memory - HBM3+ and HBM4
expected to be released between 2022 and 2024 is
likely to change substantially the application
performance landscape for future supercomputers.
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Analysis and Technology Needs: Floating-Point

Arithmetic

* The IEEE 754 Standard was simply renewed in July
2019

* Important aspects have been criticized: wasted cycles,
energy inefficiencies, and accuracy.

 Several efforts to address these problems follow two
main approaches:

* Analysis of specific algorithms and re-writing of existing
codes using mixed precision

* More radical approaches proposing new solutions — e.g. the
Posit Arithmetic proposal
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Summary

* The “Physical System Simulation” application area urgently needs
novel and innovative architectures that can help address the 3
Locality Wall.

* Energy efficiency indicators need urgent improvements by at least an
order of magnitude. This is equally valid for both homogeneous vs.
heterogeneous architectures (including accelerators and FPGAs).

e Since this application area is based predominantly on floating-point
arithmetic, novel architecture proposals that address floating-point
processing challenges can also be expected to have substantial
impact, particularly for dense system computation.

© Vladimir Getov - all rights reserved
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APPENDIX: AB IFT Team Members

Name Representing Region
Tom Conte [co-chair] Georgia Institute of Technology, USA US
Natesh Ganesh University of Colorado / NIST, USA US
Vladimir Getov [co-chair] [University of Westminster, UK Europe
Yoshihiro Hayashi Keiko University, JAPAN Japan
Masatoshi Ishii IBM Tokyo Research Laboratory, JAPAN Japan
Takeshi lwashita Hokkaido University, JAPAN Japan
Siva Rajamanickam Sandia National Laboratories, USA US
Vijay Janapa Reddi Harvard University, USA [MLperf representative] US
Masaaki Kondo Keio University, JAPAN Japan
Tushar Krishna Georgia Institute of Technology, USA US
Peter M. Kogge University of Notre Dame, USA US
Scott Koziol Baylor University, USA US
Dam Sunwoo Arm Research US
Josep Torrellas University of Illinois at Urbana-Champaign, USA US
Peter Torelli Chair, EEMBC [EEMBC representative] usS
Rio Yokoda Tokyo Tech, JAPAN [SDRJ representative] Japan
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AB IFT External Roadmap Collaborations

« EEMBC (The Embedded Microprocessor Benchmark Consortium):
https://www.eembc.org/

* SDRJ (The System Device Roadmap Committee of Japan):
https://www.sdrj.jp/

* MLPerf (Machine Learning Performance) Benchmarks as part of the
MLCommons collaborative engineering organization :
https://mlcommons.org/en/

* NIST (The National Institute of Standards and Technology):
https://www.nist.gov/
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