
2/12/2024 | Technical University of Darmstadt, Germany | Felix Wolf | 1

Felix Wolf, Technical University of Darmstadt
25th Anniversary of APART

Tracing Performance Tools Back 25 Years

Photo: Alex Becker / TU Darmstadt

2/12/2024 | Technical University of Darmstadt, Germany | Felix Wolf | 2

Starting point – peak performance gap

Source: Hennessy, Patterson: Computer Architecture, 4th edition, Morgan Kaufmann

64 processors

Peak performance
is the performance

a computer is
guaranteed not to

exceed…

2/12/2024 | Technical University of Darmstadt, Germany | Felix Wolf | 3

Event traces - too large to analyze manually

• Needles-in-the-hay-stack problem

• Low abstraction level - programmatic access needed

zoom in

https://www.vampir.eu

https://www.vampir.eu/

Forschungszentrum Jülich

4

EARL - Event Analysis and Recognition Language

Extended Python interpreter
• Also Tcl, Perl interfaces
• Pattern specified in extended scripting language

Services
• Efficient random access to events

– VAMPIR, ALOG, CLOG trace data formats
• Mapping of events to EARL event trace model

Abstractions defined in the EARL event trace model
• Permit use of simple pattern search algorithm

Forschungszentrum Jülich

5

EARL - Event Trace Model

Basic Model
• Sequence of events: E = e1,...,en

• Event types: enter, exit, send, recv
• Event attributes: time, loc, region, src, dest

Abstractions
• Pointer attributes connecting related events

– enterptr : links event to entering of enclosing region instance
– sendptr : links message receipt to message dispatch

• System states mapping events to execution context (set of events)
– Region stack: set of enter events belonging to open region instances
– Message queue: set of send events belonging to messages in transfer

Forschungszentrum Jülich

6

Example: Late Sender

MPI_RECV is posted before corresponding MPI_SEND
• Determine time during which receiver sits idle

MPI_RECV

idle time

enter_recv recv_msg

enter_send send_msg

sendptr

enterptr

enterptr

MPI_SENDLoc A

Loc B

time

Forschungszentrum Jülich

7

Pattern Class: LateSender

class LateSender(Pattern):
[...]
def recv_callback(self, recv_msg):

enter_recv = self.trace.event(recv_msg[‘enterptr’])
send_msg = self.trace.event(recv_msg[‘sendptr’])
enter_send = self.trace.event(send_msg[‘enterptr’])
idle_time = enter_send[‘time’] - enter_recv[‘time’]
if (idle_time > 0 and

enter_send[‘region’] == “MPI_SEND” and
enter_recv[‘region’] == “MPI_RECV”):

self.sum_idle_time = self.sum_idle_time + idle_time
[...]
def confidence(self): return 1
def severity(self): return self.sum_idle_time

Forschungszentrum Jülich

8

EXPERT - Extensible Performance Tool

EARL

Abstraction layer over
event trace

Pattern Library

Separate module
• Extensible by plug-ins

Analysis Component

Pattern matching
• Walking through trace file

GUI

User selection
• Performance properties
• Code region (e.g. function)

Forschungszentrum Jülich

9

EXPERT Output

Forschungszentrum Jülich

10

Test Case: Czochralski Crystal Growth

Convection processes in a rotating cylindric
crucible
• 3 dimensional cubical mesh
• 2 dimensional spatial decomposition

Most work is done in routine VELO
• Calculating new velocity vectors

Patterns used for analysis
• Communication costs
• Late sender

Forschungszentrum Jülich

11

Idle times in VELO caused by Late Sender

0,0

0,1

0,2

0,3

0,4

2x
4

4x
2

8x
1

4x
4

8x
2

16
x1 8x
4

16
x2

Communication
Costs
Late Sender

Fraction of total execution
time spent in VELO

Configuration

Forschungszentrum Jülich

12

Next generation GUI

Metrics

Call tree

System tree

13

History

1998
– Start at the ZAM (Michael Gerndt and Bernd Mohr)
– Manifesto

– First component: EARL trace-analysis toolkit (Diploma thesis, ZAM)
2000
– First prototype of an automatic trace analyzer (EXPERT)

2001
– Automatic OpenMP instrumentation (OPARI, POMP)
– First prototype of the EPILOG tracing library
– First prototype of the KOJAK GUI

M. Gerndt, B. Mohr, M. Pantano, F. Wolf: Automatic Performance Analysis for Cray
T3E, Proceedings of the 7th Workshop on Compilers for Parallel Computers (CPC
98), University of Linköping, Sweden, June-July 1998

14

History (2)

2003
– KOJAK became collaboration between Forschungszentrum Jülich

and the University of Tennessee
– First beta release of KOJAK

2004
– Release 1.0 and 2.0b
– New GUI component CUBE

6 Diploma theses
1 Ph.D. thesis
22 publications
– 3 journal articles
– 19 conference and workshop articles

15

Automatic performance analysis

Automatic performance analysis

Take event traces of MPI/OpenMP applications
Search for execution patterns
Calculate high-level call path profile
– Problem, call path, system location Þ time

Display in performance browser

Low-level
event trace

High-level
profile

Reduction

Call tree
Problem

System location

º

16

Typical performance problems

Waiting
for late

messages

Waiting in
all-to-all

operations

17

Pattern hierarchy

18

Difference operator
– Compare different experiments

Merge operator
– Integrate performance data from multiple sources

Mean operator
– Summarize a series of experiments

Obtain new CUBE instance as result
Display it like ordinary CUBE instance

CUBE Performance algebra

-

CUBE
(XML)

CUBE
(XML)

CUBE
(XML)-

=

=

19

(Re)moving waiting times

Difference between before / after barrier removal
Raised relief shows improvement
Sunken relief shows degradation

Significant reduction
in barrier time

Fraction of the waiting time
migrated to collective operations.

Call tree shows where

Virtual topology in SWEEP3D

Three-dimensional domain (i,j,k)
Two-dimensional domain decomposition (i,j)

Wave-fronts from different directions
Limited parallelism upon pipeline refill (late sender)

DO octants
DO angles in octant
DO k planes
! block i-inflows
IF neighbor(E/W) MPI_RECV(E/W)
! block j-inflows
IF neighbor(N/S) MPI_RECV(N/S)

... compute grid cell ...
! block i-outflows
IF neighbor(E/W) MPI_SEND(E/W)
! block j-outflows
IF neighbor(N/S) MPI_SEND(N/S)

END DO k planes
END DO angles in octant

END DO octants

Four new patterns

Refill from NW, NE, SE, SW
Late sender combined with change of message direction
Topological knowledge needed to recognize direction
change
Caveat: message direction has two components
o Special case: border processes

Felix Wolf22

Analysis process

Source Code Automatic multilevel
instrumentation Executable

Global definition
& trace file

EXPERT

EARL
Global resultsMerge

Execution on
parallel machine

Local definition
& trace files

Instrumentation

Measurement

Analysis

Felix Wolf23

Trace size limits scalability

Execution time
t

t

large

small

Event rate
t

t

high

low

Number of processes

t

w
id
th

• Serially analyzing a single and
potentially large global trace file
does not scale to 1000s of
processors

• Even if locality is exploited, main
memory might be insufficient to
store current working set

• Amount of trace data might not fit
into single file

Felix Wolf24

Parallel analysis process

Global result
Parallel analyzer

PEARL

Source code Automatic multilevel
instrumentation Executable

Execution on
parallel machine

Local definition
& trace files

Instrumentation

Measurement

Analysis

Felix Wolf25

Current prototype

Global results

Source code Automatic multilevel
instrumentation Executable

Instrumentation

Measurement

Analysis

Local
definition files

ID mapping
tables

Local
trace files

CombineLocal results

Unification

Execution on
parallel Machine

Parallel analyzer

PEARL

• Scalable performance-analysis toolset for parallel codes
• Integrated performance analysis process

– Performance overview on call-path level via runtime summarization
– In-depth study of application behavior via event tracing
– Switching between both options without recompilation or relinking

• Supported programming models
– MPI-1, MPI-2 one-sided communication
– OpenMP (basic features)

• Available under the New BSD open-source license
– http://www.scalasca.org/

Joint project of

http://www.scalasca.org/

The team (2010)

Which problem? Where in the
program?

Which
process?

Parallel wait-
state search

Summary
report

Wait-state
report

Instr.
target
application

Measurement
library

HWC Local event
traces

Optimized measurement configuration

Instrumenter
compiler / linker

Instrumented
executable

Source
modules

Re
po

rt

m
an

ip
ul

at
io

n

Scalability of parallel wait-state search (SWEEP3D)

Sweep3D
Late sender

• Grid of
576 x 512
processes

Redundant messages in XNS CFD code

Previous peak
performance
at 132 ts/h

Now scales up to
4096 processes

Delay analysis
[Böhme et al., ICPP 2010]

• Delay counterpart of waiting time
• Distinction between direct and indirect waiting times
• Essentially scalable version of Meira Jr. et al.
• Analysis attributes costs of wait states to delay intervals

– Requires backward replay

time

pr
oc

es
s

Delay

Direct waiting time

Indirect waiting time

Origin of delay costs in Zeus-MP/2

Computation Waiting time Delay costs

Delay analysis of code Illumination

• Particle physics code (laser-plasma interaction)
• Delay analysis identified inefficient communication

behavior as cause of wait states

Computation Propagating wait states:
Original vs. optimized code

Costs of direct delay
in optimized code

Wait-state analysis of CICE

Method: bi-directional replay
of event traces

Illustrated propagation of
wait states as a result of
suboptimal load balancing

Motivated load-balancing
simulator

35

Late sender Direct waiting time

Indirect waiting time Delay costs

Virtual Institute –
High Productivity Supercomputing

The virtual institute in a… • Partnership to develop advanced
programming tools for complex
simulation codes

• Goals
• Improve code quality
• Speed up development

• Activities
• Tool development and

integration
• Training
• Support
• Academic workshops

• www.vi-hps.org

http://www.vi-hps.org/

Score-P measurement system

Application (MPI, OpenMP, accelerator, PGAS, hybrid)

Score-P measurement infrastructure

Online interfaceProfilingTracing

Interactive
trace

exploration

Vampir
Performance
dynamics &
wait states

Scalasca
Automatic

online
classification

Periscope
Performance
data base &
data mining

TAU

2/12/2024 | Technical University of Darmstadt, Germany | Felix Wolf | 38

Scaling your code can harbor
performance surprises*…

Communication
Com

pu
tat

ion
Communication

Com
pu

tat
ion

*Goldsmith et al., 2007

2/12/2024 | Technical University of Darmstadt, Germany | Felix Wolf | 39

Performance model

29 210 211 212 213
0

3

6

9

12

15

18

21

3
¨ 10

´4 p
2 ` c

Processes

T
im

e
rs

s

Formula that expresses a relevant performance metric as a
function of one or more execution parameters

Identify
kernels

• Incomplete
coverage

Create
models

• Laborious,
difficult

Analytical (i.e., manual) creation
challenging for entire programs

𝑡 = 𝑓 𝑝𝑡 = 3 & 10!"𝑝# + 𝑐

2/12/2024 | Technical University of Darmstadt, Germany | Felix Wolf | 40

Empirical performance modeling

Performance measurements
with different execution
parameters x1,...,xn

t1 t2
t3

tn-2 tn-1
tn

…
.

Machine
learning 𝑡 = 𝑓(𝑥!, … , 𝑥")

Alternative metrics:
FLOPs, data volume…

2/12/2024 | Technical University of Darmstadt, Germany | Felix Wolf | 41

Challenges

Applications

System

Run-to-run variation / noise

Cost of the required experiments

2/12/2024 | Technical University of Darmstadt, Germany | Felix Wolf | 42

How to deal with noisy data

• Introduce prior into learning process
• Assumption about the probability distribution generating the data

• Computation
• Memory access
• Communication
• I/O~

Time Effort

2/12/2024 | Technical University of Darmstadt, Germany | Felix Wolf | 43

Performance model normal form (PMNF)

𝑓 𝑥 =)
#$!

"

𝑐# + 𝑝%! + 𝑙𝑜𝑔&
'!(𝑥)

Single parameter
[Calotoiu et al., SC13]

𝑓 𝑥!, … , 𝑥(=)
#$!

"

𝑐#0
)$!

(

𝑥)
%!" + 𝑙𝑜𝑔&

'!"(𝑥))

Multiple parameters [Calotoiu et al., Cluster’16]

Heuristics to
reduce

search space

Parameter
selection

Search
space

configuration

Linear
regression +

cross-
validation

Quality
assurance

2/12/2024 | Technical University of Darmstadt, Germany | Felix Wolf | 44

Extra-P 4.0

Available at: https://github.com/extra-p/extrap

https://github.com/extra-p/extrap

2/12/2024 | Technical University of Darmstadt, Germany | Felix Wolf | 45

How many data points do we really need?
Pr

ob
le

m
 s

iz
e

pe
r p

ro
ce

ss
 𝒔

Processes 𝒑

50

20

40

30

10

4 8 16 32 64

2/12/2024 | Technical University of Darmstadt, Germany | Felix Wolf | 46

Learning cost-effective sampling strategies
[Ritter et al., IPDPS’20]

Function generator

Noise module

Reinforcement learning
agent

Selected
parameter
values

Synthetic
measurement

Extra-P

Evaluation

Feedback

Prediction

Ground truth

Empirical model

2/12/2024 | Technical University of Darmstadt, Germany | Felix Wolf | 47

Case studies

Application #Parameters Extra
points

Cost savings
[%]

Prediction
error [%]

FASTEST 2 0 70 2

Kripke 3 3 99 39

Relearn 2 0 85 11

0

2/12/2024 | Technical University of Darmstadt, Germany | Felix Wolf | 48

Optimized measurement point selection

Sparse Better?

2/12/2024 | Technical University of Darmstadt, Germany | Felix Wolf | 49

Optimized measurement point selection
via Gaussian Process Regression (GPR)

Idea: Use covariance function

High variance High
uncertainty

Promising
measurement

Candidates
Measurement costs

have to be considered!

Cost-benefit calculation

2/12/2024 | Technical University of Darmstadt, Germany | Felix Wolf | 50

Parameter selection
[Copik et al, PPoPP’21]

• The more parameters the more experiments

• Modeling parameters without performance impact is harmful

Taint
analysis

Program

Input parameters Which
parameter
influences

which
function?

Taint labels

2/12/2024 | Technical University of Darmstadt, Germany | Felix Wolf | 51

Case study – LULESH & MILC
Influence of program parameters

LULESH Total p size regions iters balance cost p,
size

Functions 349 2 40 15 1 1 2 40

Loops 275 2 78 29 1 1 2 78

MILC Total p size trajecs warms
steps

nrest.
niter

mass,
beta
nfl.

u0 p,
size

Functions 621 54 53 12 9 6 1 4 56

Loops 874 187 161 39 31 15 1 7 196

2/12/2024 | Technical University of Darmstadt, Germany | Felix Wolf | 52

SykesOffice, CC BY 4.0

Relearn
[Rinke et. al, JPDC’18]

• Scalable algorithm to simulate
structural plasticity in the brain

• Adaptation of Barnes-Hut
algorithm (astrophysics)

2/12/2024 | Technical University of Darmstadt, Germany | Felix Wolf | 53

Complexity consideration

• O(n * log2n) = O(n * log n * log n):
• Barnes–Hut at every level:

O(n * log n)

• Tree depth: O(log n)

• Parallel complexity:
O(n/p * log2 n + p)

• (n/p log n + p)

2/12/2024 | Technical University of Darmstadt, Germany | Felix Wolf | 54

Media coverage

https://www.1730live.de/wissenschaftler-wollen-gehirn-nachbauen/

TV - SAT.1 Regionalmagazin für Rheinland-Pfalz
und Hessen

#6 of 2019

https://www.1730live.de/wissenschaftler-wollen-gehirn-nachbauen/

2/12/2024 | Technical University of Darmstadt, Germany | Felix Wolf | 55

Execution time
One connectivity update

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

640,000 | 128

1,280,000 | 256

2,560,000 | 512

5,120,000 | 1k

10,240,000 | 2k

20,480,000 | 4k

40,960,000 | 8k

81,920,000 | 16k

163,840,000 | 32k

327,680,000 | 64k

655,360,000 | 128k

1,310,720,000 | 256k

10 11
 | 2

⋅10 7

(hum
an

brain)

E
xe

cu
tio

n
 t

im
e

 [
m

in
]

Number of neurons | cores [k = 1024]

Distr. tree (θ = 0.3)
Distr. tree (θ = 0.4)
Performance model f(p) (θ = 0.3)
Performance model g(p) (θ = 0.4)

Extra-P: c1 + c2 * log p

2/12/2024 | Technical University of Darmstadt, Germany | Felix Wolf | 56

Sharp complexity for scalable algorithm
[Czappa et al, JPDC’23]

• Depending on acceptance criterion Θ, subsequent
Barnes–Hut steps have constant complexity

• O(n * (log n + log n)) = O(n * log n)

• Overall complexity for practical scenarios:
O(n/p * log n + p)

2/12/2024 | Technical University of Darmstadt, Germany | Felix Wolf | 57

FTIO: Frequency techniques for I/O
[Tarraf et al., IPDPS ’24]

• Captures the period of I/O phases
• Operates in the frequency domain
• Quantifies the confidence in the results
• Online (prediction) w/ low overhead

and offline (detection) FTIO

Frequency = 0.04 Hz
à Period = 24.025 s
Confidence = 64.9% …

Trace File

2/12/2024 | Technical University of Darmstadt, Germany | Felix Wolf | 58

Use case: I/O scheduling with IO-Sets

• Classify applications based on their period
• Shared file-system access to different classes

• Mutually exclusive access to individual jobs within the same class

Ideal periods are
hardcoded

BeeGFS without
any modifications

Error (50%) is injected
in the result from FTIO

FTIO provides actual
periods to Set-10

-20%

+26% be
tte

r

better

Slow-down compared
to running in isolation

Fraction of system time
spent on computation

2/12/2024 | Technical University of Darmstadt, Germany | Felix Wolf | 59

Thank you!

2/12/2024 | Technical University of Darmstadt, Germany | Felix Wolf | 60

Literature
Tool Paper

KOJAK/
EXPERT

• Michael Gerndt, Bernd Mohr, Felix Wolf, Mario Pantano: Performance Analysis on Cray T3E. In Proc.
of the 7th Euromicro Workshop on Parallel and Distributed Processing (PDP), Funchal, Madeira,
Portugal, pages 241–248, IEEE, February 1999.

• Felix Wolf, Bernd Mohr: Automatic performance analysis of hybrid MPI/OpenMP applications. Journal
of Systems Architecture, 49(10-11):421–439, November 2003.

Scalasca • Markus Geimer, Felix Wolf, Brian J. N. Wylie, Bernd Mohr: A scalable tool architecture for diagnosing
wait states in massively parallel applications. Parallel Computing, 35(7):375–388, July 2009.

• Markus Geimer, Felix Wolf, Brian J. N. Wylie, Erika Ábrahám, Daniel Becker, Bernd Mohr: The
Scalasca performance toolset architecture. Concurrency and Computation: Practice and Experience,
22(6):702–719, April 2010.

• David Böhme, Markus Geimer, Lukas Arnold, Felix Voigtländer, Felix Wolf: Identifying the root causes
of wait states in large-scale parallel applications. ACM Transactions on Parallel Computing,
3(2):Article No. 11, 24 pages, July 2016.

Extra-P • Alexandru Calotoiu, Torsten Hoefler, Marius Poke, Felix Wolf: Using Automated Performance
Modeling to Find Scalability Bugs in Complex Codes. In Proc. of the ACM/IEEE Conference on
Supercomputing (SC13), Denver, CO, USA, pages 1–12, ACM, November 2013.

• Sergei Shudler, Yannick Berens, Alexandru Calotoiu, Torsten Hoefler, Alexandre Strube, Felix Wolf:
Engineering Algorithms for Scalability through Continuous Validation of Performance
Expectations. IEEE Transactions on Parallel and Distributed Systems, 30(8):1768–1785, August
2019.

FTIO • Ahmad Tarraf, Alexis Bandet, Francieli Boito, Guillaume Pallez, Felix Wolf: Capturing Periodic I/O
Using Frequency Techniques. In Proc. of the 38th IEEE International Parallel and Distributed
Processing Symposium (IPDPS), San Francisco, CA, USA, pages 1–14, IEEE, May 2024, (accepted).

2/12/2024 | Technical University of Darmstadt, Germany | Felix Wolf | 61

Acknowledgment

Alexis Bandet

Nikhil Battia

Alexandru Calotoiu

Daniel Becker

Francieli Boito

David Böhme

Dominic Eschweiler

Marcin Copik

Jack Dongarra

Christian Feld

Wolfgang Frings

Markus Geimer

Alexander Geiß

Michael Gerndt

Marc-André Hermanns

Torsten Hoefler

Michael Knobloch

Daniel Lorenz

Bernd Mohr

Shirley Moore

Guillaume Pallez

Farzona Pulatova

Sebastian Rinke

Marcus Ritter

Pavel Saviankou

Martin Schulz

Christian Siebert

Sergei Shudler

Fengguan Song

Zoltán Szebenyi

Ahmad Tarraf

Brian Wiley

[…]

