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Starting point – peak performance gap

Source: Hennessy, Patterson: Computer Architecture, 4th edition, Morgan Kaufmann

64 processors

Peak performance 
is the performance 

a computer is 
guaranteed not to 

exceed…



2/12/2024 |  Technical University of Darmstadt, Germany  |  Felix Wolf |  3

Event traces - too large to analyze manually

• Needles-in-the-hay-stack problem

• Low abstraction level - programmatic access needed

zoom in

https://www.vampir.eu

https://www.vampir.eu/
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EARL - Event Analysis and Recognition Language

Extended Python interpreter
• Also Tcl, Perl interfaces
• Pattern specified in extended scripting language 

Services
• Efficient random access to events 

– VAMPIR, ALOG, CLOG trace data formats
• Mapping of events to EARL event trace model

Abstractions defined in the EARL event trace model
• Permit use of simple pattern search algorithm
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EARL - Event Trace Model 

Basic Model
• Sequence of events: E = e1,...,en

• Event types: enter, exit, send, recv
• Event attributes: time, loc, region, src, dest

Abstractions
• Pointer attributes connecting related events

– enterptr : links event to entering of enclosing region instance
– sendptr : links message receipt to message dispatch

• System states mapping events to execution context (set of events)
– Region stack: set of enter events belonging to open region instances
– Message queue:  set of send events belonging to messages in transfer
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Example: Late Sender

MPI_RECV is posted before corresponding MPI_SEND
• Determine time during which receiver sits idle

MPI_RECV

idle time

enter_recv recv_msg

enter_send send_msg

sendptr

enterptr

enterptr

MPI_SENDLoc A

Loc B

time
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Pattern Class: LateSender 

class LateSender(Pattern):
[...]
def recv_callback(self, recv_msg):

enter_recv = self.trace.event(recv_msg[‘enterptr’])
send_msg = self.trace.event(recv_msg[‘sendptr’])
enter_send = self.trace.event(send_msg[‘enterptr’])  
idle_time = enter_send[‘time’] - enter_recv[‘time’] 
if (idle_time > 0  and

enter_send[‘region’] == “MPI_SEND” and
enter_recv[‘region’] == “MPI_RECV”):

self.sum_idle_time = self.sum_idle_time + idle_time
[...]
def confidence(self): return 1
def severity(self): return self.sum_idle_time
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EXPERT - Extensible Performance Tool

EARL

Abstraction layer over
event trace

Pattern Library

Separate module
• Extensible by plug-ins

Analysis Component

Pattern matching
• Walking through trace file

GUI

User selection
• Performance properties
• Code region (e.g. function)
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EXPERT Output
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Test Case: Czochralski Crystal Growth

Convection processes in a rotating cylindric 
crucible
• 3 dimensional cubical mesh
• 2 dimensional spatial decomposition

Most work is done in routine VELO
• Calculating new velocity vectors

Patterns used for analysis
• Communication costs
• Late sender
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Idle times in VELO caused by Late Sender
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Next generation GUI

Metrics

Call tree

System tree
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History

1998 
– Start at the ZAM (Michael Gerndt and Bernd Mohr)
– Manifesto

– First component: EARL trace-analysis toolkit (Diploma thesis, ZAM)
2000 
– First prototype of an automatic trace analyzer (EXPERT)

2001
– Automatic OpenMP instrumentation (OPARI, POMP)
– First prototype of the EPILOG tracing library
– First prototype of the KOJAK GUI 

M. Gerndt, B. Mohr, M. Pantano, F. Wolf: Automatic Performance Analysis for Cray 
T3E, Proceedings of the 7th Workshop on Compilers for Parallel Computers (CPC 
98), University of Linköping, Sweden, June-July 1998
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History (2)

2003
– KOJAK became collaboration between Forschungszentrum Jülich

and the University of Tennessee
– First beta release of KOJAK

2004
– Release 1.0 and 2.0b
– New GUI component CUBE

6 Diploma theses
1 Ph.D. thesis
22 publications
– 3 journal articles
– 19 conference and workshop articles
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Automatic performance analysis

Automatic performance analysis

Take event traces of MPI/OpenMP applications
Search for execution patterns
Calculate high-level call path profile
– Problem, call path, system location Þ time

Display in performance browser

Low-level
event trace

High-level
profile

Reduction

Call tree
Problem

System location

º
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Typical performance problems

Waiting 
for late 

messages

Waiting in 
all-to-all 

operations
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Pattern hierarchy
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Difference operator
– Compare different experiments

Merge operator
– Integrate performance data from multiple sources

Mean operator
– Summarize a series of experiments

Obtain new CUBE instance as result
Display it like ordinary CUBE instance

CUBE Performance algebra

-

CUBE
(XML)

CUBE
(XML)

CUBE
(XML)-

=

=
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(Re)moving waiting times  

Difference between before / after barrier removal
Raised relief shows improvement 
Sunken relief shows degradation

Significant reduction
in barrier time

Fraction of the waiting time 
migrated to collective operations.

Call tree shows where



Virtual topology in SWEEP3D

Three-dimensional domain (i,j,k)
Two-dimensional domain decomposition (i,j)

Wave-fronts from different directions
Limited parallelism upon pipeline refill (late sender) 

DO octants
DO angles in octant
DO k planes
! block i-inflows
IF neighbor(E/W) MPI_RECV(E/W)
! block j-inflows
IF neighbor(N/S) MPI_RECV(N/S)

... compute grid cell ...
! block i-outflows
IF neighbor(E/W) MPI_SEND(E/W)
! block j-outflows
IF neighbor(N/S) MPI_SEND(N/S)  

END DO k planes
END DO angles in octant

END DO octants



Four new patterns

Refill from NW, NE, SE, SW
Late sender combined with change of message direction
Topological knowledge needed to recognize direction 
change 
Caveat: message direction has two components
o Special case: border processes
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Analysis process

Source Code Automatic multilevel
instrumentation Executable

Global definition
& trace file

EXPERT

EARL
Global resultsMerge

Execution on
parallel machine

Local definition
& trace files

Instrumentation

Measurement

Analysis
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Trace size limits scalability

Execution time
t

t

large

small

Event rate
t

t

high

low

Number of processes

t

w
id
th

• Serially analyzing a single and 
potentially large global trace file 
does not scale to 1000s of 
processors

• Even if locality is exploited, main 
memory might be insufficient to 
store current working set

• Amount of trace data might not fit 
into single file 
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Parallel analysis process

Global result
Parallel analyzer

PEARL

Source code Automatic multilevel
instrumentation Executable

Execution on
parallel machine

Local definition
& trace files

Instrumentation

Measurement

Analysis
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Current prototype

Global results

Source code Automatic multilevel
instrumentation Executable

Instrumentation

Measurement

Analysis

Local
definition files

ID mapping
tables

Local
trace files

CombineLocal results

Unification

Execution on
parallel Machine

Parallel analyzer

PEARL



• Scalable performance-analysis toolset for parallel codes
• Integrated performance analysis process

– Performance overview on call-path level via runtime summarization  
– In-depth study of application behavior via event tracing
– Switching between both options without recompilation or relinking

• Supported programming models 
– MPI-1, MPI-2 one-sided communication 
– OpenMP (basic features)

• Available under the New BSD open-source license
– http://www.scalasca.org/

Joint project of

http://www.scalasca.org/


The team (2010)



Which problem? Where in the 
program?

Which 
process?

Parallel wait-
state search

Summary 
report

Wait-state 
report

Instr.
target
application 

Measurement
library

HWC Local event 
traces

Optimized measurement configuration

Instrumenter
compiler / linker

Instrumented 
executable

Source 
modules

Re
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m
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ul

at
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Scalability of parallel wait-state search (SWEEP3D) 



Sweep3D
Late sender

• Grid of 
576 x 512 
processes



Redundant messages in XNS CFD code

Previous peak 
performance 
at 132 ts/h

Now scales up to 
4096 processes



Delay analysis
[Böhme et al., ICPP 2010]

• Delay counterpart of waiting time
• Distinction between direct and indirect waiting times
• Essentially scalable version of  Meira Jr. et al.
• Analysis attributes costs of wait states to delay intervals

– Requires backward replay

time

pr
oc

es
s

Delay

Direct waiting time

Indirect waiting time 



Origin of delay costs in Zeus-MP/2

Computation Waiting time Delay costs



Delay analysis of code Illumination

• Particle physics code (laser-plasma interaction)
• Delay analysis identified inefficient communication 

behavior as cause of wait states

Computation Propagating wait states:
Original vs. optimized code

Costs of direct delay
in optimized code



Wait-state analysis of CICE

Method: bi-directional replay 
of event traces 

Illustrated propagation of 
wait states as a result of 
suboptimal load balancing

Motivated load-balancing 
simulator

35

Late sender Direct waiting time

Indirect waiting time Delay costs



Virtual Institute –
High Productivity Supercomputing

The virtual institute in a… • Partnership to develop advanced 
programming tools for complex 
simulation codes

• Goals
• Improve code quality 
• Speed up development

• Activities
• Tool development and 

integration
• Training
• Support
• Academic workshops

• www.vi-hps.org

http://www.vi-hps.org/


Score-P measurement system

Application (MPI, OpenMP, accelerator, PGAS, hybrid)

Score-P measurement infrastructure

Online interfaceProfilingTracing

Interactive 
trace 

exploration

Vampir
Performance 
dynamics & 
wait states

Scalasca
Automatic 

online 
classification

Periscope
Performance 
data base & 
data mining

TAU
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Scaling your code can harbor 
performance surprises*…

Communication
Com

pu
tat

ion
Communication

Com
pu

tat
ion

*Goldsmith et al., 2007
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Performance model
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Formula that expresses a relevant performance metric as a 
function of one or more execution parameters

Identify 
kernels

• Incomplete 
coverage

Create 
models

• Laborious, 
difficult

Analytical (i.e., manual) creation 
challenging for entire programs

𝑡 = 𝑓 𝑝𝑡 = 3 & 10!"𝑝# + 𝑐
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Empirical performance modeling

Performance measurements 
with different execution 
parameters x1,...,xn

t1 t2
t3

tn-2 tn-1
tn

…
.

Machine 
learning 𝑡 = 𝑓(𝑥!, … , 𝑥")

Alternative metrics: 
FLOPs, data volume… 
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Challenges 

Applications

System

Run-to-run variation / noise

Cost of the required experiments
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How to deal with noisy data

• Introduce prior into learning process
• Assumption about the probability distribution generating the data

• Computation
• Memory access
• Communication
• I/O~

Time Effort



2/12/2024 |  Technical University of Darmstadt, Germany  |  Felix Wolf |  43

Performance model normal form (PMNF)

𝑓 𝑥 = )
#$!

"

𝑐# + 𝑝%! + 𝑙𝑜𝑔&
'!(𝑥)

Single parameter 
[Calotoiu et al., SC13]

𝑓 𝑥!, … , 𝑥( = )
#$!

"

𝑐#0
)$!

(

𝑥)
%!" + 𝑙𝑜𝑔&

'!"(𝑥))

Multiple parameters [Calotoiu et al., Cluster’16]

Heuristics to 
reduce 

search space

Parameter 
selection

Search 
space 

configuration

Linear 
regression + 

cross-
validation

Quality 
assurance
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Extra-P 4.0

Available at: https://github.com/extra-p/extrap

https://github.com/extra-p/extrap
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How many data points do we really need?
Pr
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m
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e 
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ss
 𝒔

Processes 𝒑
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4                     8                   16                 32                64
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Learning cost-effective sampling strategies
[Ritter et al., IPDPS’20]

Function generator

Noise module

Reinforcement learning 
agent

Selected
parameter
values

Synthetic
measurement

Extra-P

Evaluation

Feedback

Prediction

Ground truth

Empirical model
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Case studies

Application #Parameters Extra 
points

Cost savings 
[%]

Prediction 
error [%]

FASTEST 2 0 70 2

Kripke 3 3 99 39

Relearn 2 0 85 11

0
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Optimized measurement point selection

Sparse Better?
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Optimized measurement point selection
via Gaussian Process Regression (GPR)

Idea: Use covariance function

High variance High 
uncertainty

Promising 
measurement

Candidates
Measurement costs 

have to be considered!

Cost-benefit calculation
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Parameter selection
[Copik et al, PPoPP’21]

• The more parameters the more experiments

• Modeling parameters without performance impact is harmful 

Taint 
analysis

Program

Input parameters Which 
parameter 
influences 

which
function?

Taint labels
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Case study – LULESH & MILC
Influence of program parameters

LULESH Total p size regions iters balance cost p, 
size

Functions 349 2 40 15 1 1 2 40

Loops 275 2 78 29 1 1 2 78

MILC Total p size trajecs warms 
steps

nrest. 
niter

mass,
beta 
nfl. 

u0 p, 
size

Functions 621 54 53 12 9 6 1 4 56

Loops 874 187 161 39 31 15 1 7 196



2/12/2024 |  Technical University of Darmstadt, Germany  |  Felix Wolf |  52

SykesOffice, CC BY 4.0

Relearn
[Rinke et. al, JPDC’18]

• Scalable algorithm to simulate 
structural plasticity in the brain

• Adaptation of Barnes-Hut 
algorithm (astrophysics)
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Complexity consideration

• O(n * log2n) = O(n * log n * log n):
• Barnes–Hut at every level: 

O(n * log n)

• Tree depth: O(log n)

• Parallel complexity: 
O(n/p * log2 n + p)

• (n/p log n + p) 
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Media coverage

https://www.1730live.de/wissenschaftler-wollen-gehirn-nachbauen/

TV - SAT.1 Regionalmagazin für Rheinland-Pfalz 
und Hessen

#6 of 2019

https://www.1730live.de/wissenschaftler-wollen-gehirn-nachbauen/
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Execution time
One connectivity update
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Sharp complexity for scalable algorithm
[Czappa et al, JPDC’23]

• Depending on acceptance criterion Θ, subsequent 
Barnes–Hut steps have constant complexity

• O(n * (log n + log n)) = O(n * log n) 

• Overall complexity for practical scenarios: 
O(n/p * log n + p) 
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FTIO: Frequency techniques for I/O
[Tarraf et al., IPDPS ’24]

• Captures the period of I/O phases 
• Operates in the frequency domain
• Quantifies the confidence in the results
• Online (prediction) w/ low overhead 

and offline (detection) FTIO

Frequency = 0.04 Hz
à Period = 24.025 s
Confidence = 64.9% … 

Trace File
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Use case: I/O scheduling with IO-Sets

• Classify applications based on their period
• Shared file-system access to different classes 

• Mutually exclusive access to individual jobs within the same class

Ideal periods are 
hardcoded

BeeGFS without 
any modifications

Error (50%) is injected 
in the result from FTIO

FTIO provides actual
periods to Set-10

-20%

+26% be
tte

r

better

Slow-down compared 
to running in isolation

Fraction of system time 
spent on computation
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Thank you!
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