SUIT: Secure Undervolting with
Instruction Traps

Frank Mueller
mueller@cs.ncsu.edu

NC STATE UNIVERSITY

Department of Computer Science

Power-Aware Computing at Scale -- RAPL

e PTune + PPartition: Enforce system-level power budget + improve
both system and job performance [PACT2016]

System-level System's power
Power Scheduler | budget = 800W

_—

Job Scheduler
(slurm

Nodes(4,5,6,7,8)
P2:500W

_ PSHIFTER | { PSHIFTER |
- .
2] 5]
» Job 1 Job 2

eShifter: Runtime system to reduce performance imbalance by
dynamic power management [HPDC2018]

e Uncore Power Scavenger: Runtime system to conserve uncore
power without a significant performance degradation [SC'19]

BONASL. [Sumeyomere M it

onsortium for Advanced Simulation of | WRs NG STATE UNIVERSITY

ASPLOS’24 paper

SUIT: Secure Undervolting with Instruction Traps

Jonas Juffinger
Graz University of Technology
Graz, Austria
jonas.juffingeri@iaik.tugraz.at

Daniel Gruss
Graz University of Technology
Graz, Austria
daniel.gruss@iail.tugraz.at

Abstract

Modern CPUs dynamically scale voltage and frequency for
efficiency. However, too low voltages can result in security-
critical errors. Hence, vendors use a generous safety margin
to avoid errors at the cost of higher energy overheads.

In this work, we present SUI'T, a nowvel hardware-softeare
co-design to reduce the safety margin substantially without
compromising reliability or security. We observe that not
all instructions are equally affected by undervolting faults
and that most faultable instructions are infrequent in prac-
tice. Henoe, SUIT addresses infrequent faultable instructions
via two separate DVES curves, a conservative and an effi-

———m ks e e T B e ks F Tl LY e J e b il e e OTTTM e il — Tl

Stepan Kalinin
Morth Carolina State University
Raleigh, NC, 1TS54

skalini@ncsu.edu

Frank Mueller
Morth Carolina State Umiversity
Raleigh, NC, USA

frmuelle@ncsu.edu

What is Undervolting?

e Power P ~ f * V2 > higher processor frequency f, faster execution

e Gamers overvolt = increase frequency "beyond specs”
» Higher power consumption
e Not widely know: undervolting supported as well
— So lower f > slower execution? Well, not necessarily

> Lower power P
> Little performance change - occasionally even faster (?)

e This work: Undervolting for sustainable computing
— Lower P w/o performance less

E.P Conservative DVFS Curve Cy

© | —-—-Efficient DVFSC
g ClENn urve | Ef-’ —s

;-\‘ _'__I-'- -

E __FF—"_:F:TFF_ - -

= ST —— — -

w

Clock Frequency 4

Manufacturer Guardband

e Challenge: knowing how far to undervolt before system halts
— Manufacturer keep guardband for safety

— Generally too conservative

Nominal Minimum Voltage Guardband

-Same for all processors CPU Supply Voliage

e Opportunity: redefine guardbard
— Take process variations into account
— Can be more aggressive to lower guardband

— Adlelonal P SaVlngs Up to a 150 mV variation in instruction voltage requirement.
" ll._,_r"‘_._\
e Problem: instr. require diff. P EENRRRY 1i-vec| Agng [T [-
— Some halt system earlier Ty R E——
£ | CPU Supply Voltage
. ¥. Pt ¥ ¥
Instruction iﬁxﬁﬁaﬁﬁﬁﬁﬁﬁgﬁﬂﬁ@

Number of Faults 79 47 40 4030 282416 9 5 3 1

Co-Design for Undervolting Faults

e Idea: add MSR to enable fault
on power-critical instructions

— Kernel defines handlers
— Fault/exception on

high power instr.

e 2 mitigation options:

1.

2.

Increase f, re-execute,
keep f high for some time,
lower f when high-P instr.
no longer seen

CPU
CPU Frontend

Operating System Disabled Opeode - _m

% Exception Check
Disabled Opeode || 3 _| Tiable Opeode Opeode
}ImpﬂDT Handler i} MSR :‘iut!f}jmhlwi

s DVFS CPU Backend
Operating Strategy:| | 3
Curve Swithing or || 2| |Switch | [Control Increase
Emulation Curve | LMSHs IMUL latency
v oq L i E
> 5 4 —— AES Instructions | (3
g1 ? 7 —---DVFS Curve ! i
O 10 ““—I‘ ————————————— - | —— B E

4.25-10° 4.26+10°

Instruction Index

- good for infrequent high-P instr. (e.g., AES, SSE, AVX, ..)

Modify instr. o no longer by high-P
Ex.: multiply microcode change from 3 > 4 cycles

Operating Strategies

e Lower frequency f
- instant but exec. Slow

e Incr. voltage V
- need to wait for V to ramp up,
then change f

e Lower f & incr. V

- but be smart: —— Disabled Instructions ----Frequency -— Voltage
. U T4 oo oToT o]
— Lower f, keep running g1 &
- e il [
— meanwhile rampup V. & 101 HHLL ([T
— Once V STable, incr. f Instruction Index
o Challeng.es. | g 10
— Anticipation of bursts 3 107 -
of high-P instr. > AES in VLC ~ * 1, . . . |

— Same for SIMD in SPEC CPU 2100 410" 620" 80’

Instruction Index

Assessing X386 Potential

Intel Core i9-9900K % 900 | 20 repetitions i |
. PELER
o Voltage t=0: V,, instr. faults, 2 _ —1x 11
ramp up to Vyig, 2 0 100 200 300 400 500 600

— Delay before Vg, stable Duration (ps)
— 1= 350-379us =>then :
re-execute faulted instr.

o Frequency: Delay 20us (CPU stalled) e e e ! s A

Core Freq
(GHz)

Duration (us)
- then re-execute g o , —
AMD Ryzen 7 7700X £§72 U R
e Voltage delay ~ 668us (CPU not stalled) Y e
Intel Xeon Silver 4208 Eo T T oy
'; % 2.8 | -l - Volt :gi%’ E
e 15V change ~ 335us Gl m e e R

e 2 f change ~ 31 us (CPU stall for 27us) Duration (us)

Develop Safe Guardband

e Depends on undervolting offset o MeanFreq /Gl —o-- Mean Power /W
— Change in SPEC CPU scores FE e
. . ~ “‘-H,H _F'_'.-*.'_”_J_‘ £ -
— Higher potential for Xeon, AMD§ , | — ¢ "+ -
w —— e e El455 3
— Can speed up code > why? I) G [5
- -7 =70 —40 0
» Lower‘ f+P_|Ower‘ Temp . . Core + Cache Voltage Offset / mV
- room to TDP - can incr f again!
e IMUL 3->4 cycles: can lower V S [——p—— -
— 0-1.6% performance loss % 14 ~—Modified IMUL T Lay
. = 0.9 - __.f”"'_-j Ta ~
e Need aging guardband > 15%/10yrs & os{ ——meeceeee o200 40T

e Need temprature guardband > 3.5% 1 imqum;;m, ’ ’

e INT faster by 0.5-2.6%

e FP slower by 4-6% fprate intrate 508 521 538 554 525 548

: 9-9900K —41% 05% —22% —14% —12% —3.3% 7.0% 7.7
— But potential for 7700X -59% 2.6% —35% —5.3% —9.0% —19% 22% 6.5

T
T

short float formats

9

fV Operating Strategy & Eval Framework

Strategy design
e p_dl: deadline b/w 2 faulting instr
e p_ts: time span for aggregate # faults

e p_ec: max. faults during p_ts
to avoid trashing

e p_df: factor to incr deadline
if fault during p_ts

Evaluation

e Instr. frace - simulation + strategy
— GEMB5+SPEC CPU2017
— MSR instr disable+Linux exception

class Operating_Strategy_fV:
def disabled_instruction_exception_handler():
we wait for the frequency to change
cpu.change_psatate_wait (DVF5.CF})
and request the voltage change
cpu.change_pstate_async{DWF5.Cv)

L= I =T ¥ R P I

cpu.set_instructions_disabled (False)

B w

trashing prevemtion

if exception_count_im_timespan(p_ts) >= p_ec:
cpu.set_timer_interrupt{p_dl * p_df)

else:
cpu.set_timer_interrupt{p_dl}

o =
W oE P B e

16 def timer_interrupt_hamdler{):
cpu.set_instructions_disabled (True}
18 cpu.change_psatate_async{DWF5.E}

s
=1

CPUModel Ml Eyent Based — Operating
Instruction Trace | CPU Simulator Strategy
CPU x86-64, 2 Core, 3 GHz, 03 (Out-Of-Order) CPU
DEAM 2 Channel, 3 GB DDR4_2400_8x8
Cache &4 kB L11, 32 kB L1D, 2MB LLC
gemS5 Mode Full Sy stem
0s Ubuntu 20.04.1 with Linux kernel v5.19.0

Results: Sensitivity to Architecture

e A: Intel Core i9-9900K, 1 DVSF domain total (1/4 cores)

e B: AMD Ryzen 7 7700X, 1 freq domain per core
e C: Intel Xeon Silver 4208, 1 DVFS domain per core

e Core count = best when individual DVFS domain per core
— fV: need to control changes in both f and V, need low df delay
— e: emulate after fault (instead of DVFS) > bad idea

70 mV Undervolt 97 mV Undervolt

s i 0 obh P a0 S ook StP
cPUes FECF O T 0T G gt il O grECe sl qpEte gt ic
Pwr -56% -71% -71% -T71% -=-35% -39% -97% -11% -12% -15% —-G58% —-6.3%
Ay v Perf. —-0.2% —-1.3% -13% +3.0% +05% -04% +08% +13% 1% +34% +12% +02%
Eff. +5.7% +6.2% +6.2% +11% +4.2% +3.6% +12% +14% +14% +21% +T74%m +69%
Pwr —-46% =01% -69% =-74% -=10% -10% -89% -=87% -=13% -=l6% -l6% —=16%
Ay v Perf. -3.9% 0.0% -79% +18% -03% —-06% -36% -35% -72% +1B%n -0l —-05%
Eff. +0.7% 0.1% =10% +100% +0.7% +04% 4+58% +5.7% +6.7% +22% +15% +11%
Pwr -75% —T76% -54% -75% -T7.2% -72% -—-12% -—12% -—-10% -—-17% -—12% —12%
Aoa e Perf. —42% -=12% +6.2% +14% —98% =927 —42% -=12% +61% +14% -—98m 0 —92%
Eff. =-3T7T% —45% +12% +%6%m —98% 91w -—-Me +06% +1Bm +22% —-9B%m 91w
Pwr -81% —78% -78% -91% —d4d4% —-44% -—-12% —11% -11% -—-14% —-6T7% -—-67%
f Perf —78x —7.8% -92% +04m -25% -25% -—10% -11% —12% +06% -23m -23%
B Eff. +0.3% 0.0% -=-16% +11% +2.0% +2.0% +14% 01% =1l6% +17% 7% +H47%
. Pwr -92% —B.0% -1l -92% -98% -98% -l4% -13% -lo®m -—-1l4% -—-15% -—15%
g Perf —-26% -51% +15% —05% -9 % —80% —26% —52% +19% 00s —-9%% —-80%
Eff. —19% +3.1% +28% +05% —095% —TEm —14% +93% +4l® +17%m 95w —Tew
Pwr -56% -T1% -71% -6l1% -36% -—-40% -98% -11% -12% -—-14% -58% —6.6%
Coa [V Perf. —08% —-1.9% -19% +35% +03% -11% +02% +0.2% —0.6% | +38% +1.0% —0.6%
Eff. +5.1% +5.5% +55% +10% +4.0% +3.0% +11% +13% +13% +21% +7.3% +64%

Efficiency Gains

e -70mV (green), -97mV (blue)
e Efficiency e=1/(dt*dP)
e Avg. efficiency gain 11% (efficienT DFVS 72% of time)

70 mV Performance (Ief) and Effciency (right) E B 57 mV Performance (left) and Efficiency (right)
1l | | | | |

S mm—i

“Q’r"/}i

Jm P ME =
@%‘«ﬁ%@ 2N e @fﬂ*@é‘:’;’%ﬁﬁ ey #“

SPEC CPU2017 Floating P(Jl.lll

«——— SFEC CFUEﬂﬂ]uteger —_—

12

Co-design for Undervolting...

Conservative DVFS Curve Cy
———- Efficient DVFS Curve Ef* -]

— _-""E
e -
=

e Redefines guardband - allows lower V

Supply Voltage

e Requires co-design E |
— Changed instruction set (IMUL 3>4 cycles) Clock Frequency
— MSR protection of high-P instr
— Exception support in OS > handler implements fV policy

e More sustainable computing > lower operating costs (win-win:)
— Less power consumption
— Little impact on performance (sometimes even faster)

e On-going work w/ GPUs, short data formats

e Ideas for facility power management
— Allow P over-provisioning

— Dyn cap power profiles
to maintain stability and meet cost targets

13

My (our) 30 years of tools, runtime systems,...

e Parallel and Distributed Systems e Big Data and Cloud Computing
— Anomaly detection/prediction

— Reliability, availability, . . .
serviceability — Data-intensive computing

e Programming Lang./Compilers — Enterprise Storage Systems
— Data-intensive computing

— Machine learning

— Machine learning middleware

e High Perf. Comp.

— Heterogeneous computing — Performance analysis/tuning
— Software reliability and bug __ Fault-tolerant HPC
analysis
e Computer Arch / Operating Systems: — Parallel /O
UI:‘) g — Extreme Storage sys‘r;ms __ Power-aware HPC
M Lawrence Livermore — Deep Memory Hierarchies
National Laboratory Virtualization, Multi-core — Heterogeneous (6PUs, FPGAs
PY Quan'rum Compu-‘-ing ® Embedded /Real'Time
® NCSU — Noise m|1'|ga1'|on — Real’Tlme SCh.edU“rllg
— Domain-spec. languages — Timing analysis
NC STATE UNIVERSITY IrReIen — Embedded/real-time OS

Department of Computer Science

— Compilation — Cyber-physical systems
14

USENIX ATC’93

e 1st POSIX threads implementation ever

e Needed by Culler's Network of Workstations (NOW) project
e Gnu Ada compiler needed it for validation (tasks)

e Later: DSM-Threads (RTS4PP'98 > HIPS)

A Library Implementation of
POSIX Threads under UNIX

Frank Mueller! - Florida State University

ABSTRACT

Recently, there has been an effort to specify an [EEE standard for portable operating
systems for open systems, called POSIX. Ome part of it, the POSIX 1003.4a threads
extension (Pthreads for short) [12], describes the interface for hight-weight threads that rely
omn shared memory and have a smaller context frame than processes.

This paper describes and evaluates the design and implementation of a lbrary of
Pihreads calls that is solely based on UNIX. It shows that a library implementation s
feasible and can result in good performance. This work can also be wsed as a comparison of
the performance of other implementations, or as a prototyping, testing, and debugging system
in the regular UNIX environment. Finally, some problems with the Pthreads standard are
identified.

Binary rewriting to extract shmem traces

e TOPLAS'O6, PPoPP'06, ICS'05+04, C60'03
e Cache coherence bottlenecks in OpenMP

METRIC: Tracking Down Inefficiencies in the Memory Hierarchy via Binary Rewriting *

Jaydeep Marathe', Frank Mueller!, Tushar Mohan®,
Bronis R. de Supinski®, Sally A. McKee?, Andy Yoo!

! Dept. of Computer Scicmce Sehoal of Co T ting * Schoal of ECE * Lawrence Livermore National Lab
Morth Canolina State University University of Uiah Cornell University Center tor Applied Scientific Computing
Raleigh, NC 27695-7534 Salt Lake City, UT 84112 Ithaca, NY 14853 L-56 1, Livermane, CA 94551

mueller@cs nesu.edu, phone: (919) 515-7589

Abstract tween processor speeds and memory latencies. Thus, locat-

g and eliminating sources of inefficiencies in the memory

In this paper, we present METRIC, an emvironment hierarchy can podentially impact application performance W
Sor determining memary ingfficiencies by examining data a significant degree.

traces. METRIC ix designed to alter the performance be- Incremental memaory hierarchy simulation by capluring

havior of applications that are mostly constrained by their the address trace of an applicatuon 15 a highly accurate

16

Binary rewriting to extract shmem traces

e TOPLAS'O6, PPoPP'06, ICS'05+04, C60'03

e Cache coherence bottlenecks in OpenMP

e PRSD: Power reqular section descriptor

e Ttanium+later x86 PEBS (probabilistic event-base sampling)

P m— m -~ - - m m T e e e e e e e e e e e e e m e mm—m— I
1 I
i ~ o — Shared Object |
: _ CI') o Points . __"————________ :
: Autach to Target &) . . B ‘————__________ ——— Handler{) —s=] Trace :
| insert snippet of Interest — o —) . 1
1 = = Handler() ————=| Comp ression 1
1 ——) I
I (3D Exccuti @ | Handler()——s| Module [
| = ixecuting |
| Allow Target Tarset Trace) |
I to coniinie arg G . —E I
| emeration ' \“_5-:) I
1 Y — I
| | , Curput
!] Compressed] o !
| Controller o SLU[]{‘ | Trace J Compressed Trace |
! Information \:__________-._____________________________________'
| X J I
1 i
| - . I
| P ! 5
[D Variable ! \; Driver .| MHSim
' = Information : Simulator
: Extrace information .) | /
: ahout target . I

Access pt. I
|
! Information]
| |
! <line, file= CED : Feedback
| tuples Trace : Human

* Carrelation |
ONLINE | 1 [OFFLINE

ScalaTrace: MPI Traces

e Scalably capturing full trace of communication
— Near constant trace sizes for some apps (others: more work)
— Near constant memory requirement

e Rapid analysis via replay mechanism (w/o app) Sem—==—w=S
— Record Aft, retaining timing > scalable ;"'1;7 et
— Fast timeline search, easy outlier detection =) .~

> Lossless MPTI tracing, any # node feasible
— May storedvisualize MPI traces on desktop |

e ScalaTrace [IPDPS'07] best paper
® T|med r'elay [ICS'O8] ety 3 B B @ 1

e Code availabile under BSD license:
moss.csc.ncsu.edu/~mueller/scala.html

Trace.o

e NCSU: Mike Noeth, Prasun Ratn; LLNL: Bronis de Supinski, Martin Schulz

18

ScalaExtrap: Comm+IO Extrapolation

PPoPP’11+IPDPS’17(l1O)

Motivation: Comm.+IO analysis at scale - without running app!
Idea: synthetically generate elastic comm. fraces:

Replay large trace/analyze it

Challenges:
— Topology detection
— Message payloads, IO files
— Time extrapolation

Workload: any MPI, stencil/ mesh+p:mg:i
Machines: Clusters/HPC

Resources: Comm.+I/O+compute
Scale: 16k nodes BG/P: > 92% Accuracy

Extrapolation not so elusive anymore

1

(3) Signature Clustering [ICS’14]

Objective:

e trace few
(representative) nodes

e replay over all nodes

Hierarchical:

1. Call path Clustering: stack
signature (XORed backtrace

2. Parameter Clustering:
parameter signature
(range composed)

User plug-in functions
e 2" comm. pattern in CG:

68
58

48

38

Score

28

L]

a

a 18 28 38 48 a8 68

.

Intra-Node Compressio} A [] A i\(* A [] *

- Cluster A Cluster B
Call-Path Clusteril}g ** L]
\ * .
ClAO Cl A1 (CIB1l clB2
[Parameter Clusteri}g A)¢ []
A Ay Y m
[Trace Sampling] A A * i\(]
AN . \ |
= v-an S r v'
[Reduction] A * []

[ScalaTrace Inter-Compressioa

20

Clustering Contributions

T 1000
e Novel hierarchical clustering algorithm % 3 "
— log P time complexity+low overhead E o - N f
e Compared to w/o clustering % 10 | 3 ’” E:‘%
— 1 order of magnitude less exec. overhe é = ’ J
— 2-3 orders of magnitude less space & : gﬁ RE’K
e Trace accuracy: s Bl 16 64 256 1024
— Over 85% for strong scaling S | N“mbler o P”I:’CGSSGSI
— Over 93% for weak scaling % - N
e Hierarchical clustering E 400
- very effective technique % 300
— suitable for extreme-scale computing 3z 200 §a [\
z o L REFA NE Ndys Nl
=1 Without Clustering =~ > Call-path+Parameter Clustering © 64 256 1024
... Reference Clustering 2 Application Time Number of Processes

21

i %OAK .
HPC Resilience () i PRIDGE =21 ¢

National Laboratory EEIEERENY]

Scalable network overlay (ICS'06)

— track live nodes, group communication

. Reactive fault tolerance (IPDPS'07, Linux'11, ICPADS'11)

— job pause - 70% reduced resubmit overhead

— Incr. Chkpts > 1:9 full/incr. Ratio best, reduce I/0

. Proactive fault tolerance (ICS'07, SC'08, JPDC'12)

— process virt. > 3 overhead of OS, health monitor

— live migration > 3 # chkpts

— back migration > wins if >10% work left

. Redundancy + SDC Handling (ICDCS'12, SC'12, Cluster'15, ICS'16)

— 2x # nodes > 2x # jobs: capacity not capability comp.

— dual for SDC check / triple SDC correction (msgs, RAM, I/0)

. Algorithm-based Fault tolerance (IPDPS'14. Chen et al., HPDC'15)

— Complements above, sign. less overhead, only dense linear algebra
— Model SDC for numerical algorithms - Sandbox: run thru errors
. Predict which exact node will fail when (HPDC'18+SC'18)

— Enables proactive actions = can reduce C/R frequency even more
Code contributed to BLCR, available for Open MPI, later RedMPI

22

Machine Learning to Predict Failures in HPC

e Collaboration w/ several Nat'l Labs
— ORNL Summit Supercomputer: #1 fastest in the world

e Problem: failures happen, compute nodes stop working
— Same as Cloud computing when you scale out
— more nodes/components > more failures

e Hypothesis: can predict failures timely for evasive action

23

Proactive Fault Tolerance

......

...........

L o

o
-
o
.
-
R
.
-
. o
.
.
.
.
.
.
.
.
.

heckpoint/ Reschedule the job
estart allocated on A & B t
B&D
High Overhead

Computation and Power Wastage

HPC Node Failures

TOMORROW

Migrate Processes

Quaranfine
from A to D

, Failing Node A
mle a Failure Predictor:

v' Deep Learning used for prediction
v Which node will fail? When?

\Wwil] fail in 5 minutes !!

How to Predict Failures in HPC [SC’18,HPDC’18...]

e Approach: Long-Short-Term-Memory based machine learning
— Train to recognize anomaly patters on systems logs
— Predict which component is about to fail
— Determine location of failing component
— Take evasive action, e.g., migrate computation o new node

e 2-3 min. lead time to failure g = 5Sta’;dard De‘”;a“on " i
— Accuracy > 83%, F1<=89.99% ¢ 150 ******* * """ * """"" . """" 1
— FP Rate:16.66% to 25% % 100 || . "
— Proactive: cloning (90 secs), = s0} H L I O . T
job migration (13-24 secs) 2 . H
G S ”\290& 2 ’%%
e Lead Time Sensitivity with Failure Classes Node Failure Class

— Lead times to Kernel Panics are short (58.87 secs)
— MCE and Hardware-caused failures longer keads (124-160 secs)

25

HPC Resilience + ML to Predict Faults
(Subhendu Behera, ORNL+LLNL)

Problem: failures happen, compute nodes stop working
Hypothesis: can predict failures timely for evasive action

Approach: Long-Short-Term-Memory based ML [HPDC'18,5C'18,...]

Live migration vs. checkpointing w/ failure prediction [HPDC'20]
— considers burst buffers o B
— 20-86% reduced overhead

IPDPS'22: asynchronous safeguard chkpts |
— Prioritized, add'l savings 4-60%

Fault propagation within Flux job scheduler
— within+across jobs - coordinated
— dynamically adaptive workflow scheduling
— persistent storage abstraction for workflow resilience

26

Parallel

System

Quantum HW/SW Stack

Part of NSF STAQ (Duke) and NSF QLCI RQS (UMD)

Domain-specific quantum abstractions: o [I A DD
SAT-problems, Physics, Chemistry [SC'22] =T S
. . Domai‘n _ ' ' Biol_olgy’
Circuit opts.: at gate+pulse levels ?’i‘iﬁ;ﬂi‘;‘é’l Frses | ey
and Libraries porery

Algo+noise-aware problem solving [QCE'22

. . . . High-Level High-Level on o
Semantic tracking during pgm translation l :52’1?:;?5” Ropreseiatio Dev°1 2
. , (HLIR) NISQLL
HW/SW stack for ion traps [QCE'23] » |S;'::,:c
Medium-Level ScaffCC/ Circuits

Abstraction LLVM

(MLIR)

Create/exploit multi-qubit native gates

HL/
HLIR ML

LLVM

MLIR gen. lib
Support

Sparse tensor networks for quantum
simulation > SIMD+multi-node

Insttute for @
NC STATE UNIVERSITY g wiwin CTAQ o P
Department of Computer Science Simulation eices

LL

LLR; [LLR;| pyice

IBMQ Dev igetti
+Pulse +Pulse

Thanks for the Invitation! Questions?

Pubs:

https://moss.csc.ncsu.edu/~mueller/publications

NC STATE UNIVERSITY

Department of Computer Science

