
1

Frank Mueller
mueller@cs.ncsu.edu

North Carolina State University

SUIT: Secure Undervolting with

Instruction Traps

2

Power-Aware Computing at Scale -- RAPL

� PTune + PPartition: Enforce system-level power budget + improve
both system and job performance [PACT2016]

�Shifter: Runtime system to reduce performance imbalance by
dynamic power management [HPDC2018]

� Uncore Power Scavenger: Runtime system to conserve uncore
power without a significant performance degradation [SC'19]

3

ASPLOS'24 paper

4

What is Undervolting?

� Power P ~ f * V2 � higher processor frequency f, faster execution

� Gamers overvolt � increase frequency ªbeyond specsº
� Higher power consumption

� Not widely know: undervolting supported as well
Ð So lower f � slower execution? Well, not necessarily

� Lower power P
� Little performance change � occasionally even faster (?)

� This work: Undervolting for sustainable computing
Ð Lower P w/o performance less

5

Manufacturer Guardband

� Challenge: knowing how far to undervolt before system halts
Ð Manufacturer keep guardband for safety
Ð Generally too conservative

±Same for all processors

� Opportunity: redefine guardbard
Ð Take process variations into account
Ð Can be more aggressive to lower guardband
Ð Additional P savings

� Problem: instr. require diff. P
Ð Some halt system earlier

6

Co-Design for Undervolting Faults

� Idea: add MSR to enable fault
on power-critical instructions
Ð Kernel defines handlers
Ð Fault/exception on

high power instr.

� 2 mitigation options:
1. Increase f, re-execute,

keep f high for some time,
lower f when high-P instr.
no longer seen
� good for infrequent high-P instr. (e.g., AES, SSE, AVX, ¼)

2. Modify instr. to no longer by high-P
Ex.: multiply microcode change from 3 � 4 cycles

7

Operating Strategies

� Lower frequency f
� instant but exec. Slow

� Incr. voltage V
� need to wait for V to ramp up,

then change f

� Lower f & incr. V
� but be smart:
Ð Lower f, keep running
Ð meanwhile ramp up V
Ð Once V stable, incr. f

� Challenges
Ð Anticipation of bursts

of high-P instr. � AES in VLC
Ð Same for SIMD in SPEC CPU

8

Assessing X86 Potential

Intel Core i9-9900K

� Voltage t=0: Vlow instr. faults,
ramp up to Vhigh

Ð Delay before Vhigh stable
Ð t= 350-379us �then

re-execute faulted instr.

� Frequency: Delay 20us (CPU stalled)
� then re-execute

AMD Ryzen 7 7700X

� Voltage delay ~ 668us (CPU not stalled)

Intel Xeon Silver 4208

� 1st V change ~ 335us

� 2nd f change ~ 31 us (CPU stall for 27us)

9

Develop Safe Guardband

� Depends on undervolting offset
Ð Change in SPEC CPU scores
Ð Higher potential for Xeon, AMD
Ð Can speed up code � why?
� Lower f+P=lower temp
� room to TDP � can incr f again!

� IMUL 3�4 cycles: can lower V
Ð 0-1.6% performance loss

� Need aging guardband � 15%/10yrs

� Need temprature guardband � 3.5%

� INT faster by 0.5-2.6%

� FP slower by 4-6%
Ð But potential for

short float formats

10

fV Operating Strategy & Eval Framework

Strategy design

� p_dl: deadline b/w 2 faulting instr

� p_ts: time span for aggregate # faults

� p_ec: max. faults during p_ts
to avoid trashing

� p_df: factor to incr deadline
if fault during p_ts

Evaluation

� Instr. trace � simulation + strategy
Ð GEM5+SPEC CPU2017
Ð MSR instr disable+Linux exception

11

Results: Sensitivity to Architecture

� A: Intel Core i9-9900K, 1 DVSF domain total (1/4 cores)

� B: AMD Ryzen 7 7700X, 1 freq domain per core

� C: Intel Xeon Silver 4208, 1 DVFS domain per core

� Core count � best when individual DVFS domain per core
Ð fV: need to control changes in both f and V, need low df delay
Ð e: emulate after fault (instead of DVFS) � bad idea

12

Efficiency Gains

� -70mV (green), -97mV (blue)

� Efficiency e=1/(dt*dP)

� Avg. efficiency gain 11% (efficient DFVS 72% of time)

13

Co-design for Undervolting�

� Redefines guardband � allows lower V

� Requires co-design
Ð Changed instruction set (IMUL 3�4 cycles)
Ð MSR protection of high-P instr
Ð Exception support in OS � handler implements fV policy

� More sustainable computing � lower operating costs (win-win:)
Ð Less power consumption
Ð Little impact on performance (sometimes even faster)

� On-going work w/ GPUs, short data formats

� Ideas for facility power management
Ð Allow P over-provisioning
Ð Dyn cap power profiles

to maintain stability and meet cost targets

14

My (our) 30 years of tools, runtime systems,�

� FSU

� HUB

� LLNL

� NCSU

� Parallel and Distributed Systems
Ð Anomaly detection/prediction
Ð Reliability, availability,

serviceability
� Programming Lang./Compilers

Ð Data-intensive computing
Ð Machine learning
Ð Heterogeneous computing
Ð Software reliability and bug

analysis
� Computer Arch / Operating Systems:

Ð Extreme Storage systems
Ð Deep Memory Hierarchies
Ð Virtualization, Multi-core

� Quantum Computing
Ð Noise mitigation
Ð Domain-spec. languages
Ð Simulation
Ð Compilation

simulation

� Big Data and Cloud Computing

Ð Machine learning middleware

Ð Data-intensive computing

Ð Enterprise Storage Systems

� High Perf. Comp.

Ð Performance analysis/tuning

Ð Fault-tolerant HPC

Ð Parallel I/O

Ð Power-aware HPC

Ð Heterogeneous (GPUs, FPGAs,

� Embedded /Real-Time

Ð Real-time scheduling
Ð Timing analysis
Ð Embedded/real-time OS
Ð Cyber-physical systems

15

USENIX ATC'93

� 1st POSIX threads implementation ever

� Needed by Culler's Network of Workstations (NOW) project

� Gnu Ada compiler needed it for validation (tasks)

� Later: DSM-Threads (RTS4PP'98 � HIPS)

16

Binary rewriting to extract shmem traces

� TOPLAS'06, PPoPP'06, ICS'05+04, CGO'03

� Cache coherence bottlenecks in OpenMP

17

Binary rewriting to extract shmem traces

� TOPLAS'06, PPoPP'06, ICS'05+04, CGO'03

� Cache coherence bottlenecks in OpenMP

� PRSD: Power regular section descriptor

� Itanium+later x86 PEBS (probabilistic event-base sampling)

18

ScalaTrace: MPI Traces

:

� Scalably capturing full trace of communication
Ð Near constant trace sizes for some apps (others: more work)
Ð Near constant memory requirement

� Rapid analysis via replay mechanism (w/o app)
Ð Record Dt, retaining timing � scalable
Ð Fast timeline search, easy outlier detection

� Lossless MPI tracing, any # node feasible
Ð May store&visualize MPI traces on desktop

� ScalaTrace [IPDPS'07] best paper

� Timed relay [ICS'08]

� Code availabile under BSD license:

moss.csc.ncsu.edu/~mueller/scala.html

� NCSU: Mike Noeth, Prasun Ratn; LLNL: Bronis de Supinski, Martin Schulz

19

ScalaExtrap: Comm+IO Extrapolation
PPoPP'11+IPDPS'17(IO)

� Motivation: Comm.+IO analysis at scale ± without running app!

� Idea: synthetically generate elastic comm. traces:
Ð P=8,16,32,64 nodes trace � P=4096 trace (or any P)

� Replay large trace/analyze it

� Challenges:
Ð Topology detection
Ð Message payloads, IO files
Ð Time extrapolation

� Workload: any MPI, stencil/mesh+plugin

� Machines: Clusters/HPC

� Resources: Comm.+I/O+compute

� Scale: 16k nodes BG/P: > 92% Accuracy

Sweep3D (weak scaling)

Extrapolation not so elusive anymore

20

(3) Signature Clustering [ICS'14]

Objective:
� trace few

(representative) nodes
� replay over all nodes
Hierarchical:
1. Call path Clustering: stack

signature (XORed backtrace)
2. Parameter Clustering:

parameter signature
(range composed)

User plug-in functions
� 2nd comm. pattern in CG:

Cluster A Cluster B

Call-Path ClusteringCall-Path Clustering

Parameter ClusteringParameter Clustering

Trace SamplingTrace Sampling

ReductionReduction

ScalaTrace Inter-CompressionScalaTrace Inter-Compression

Intra-Node CompressionIntra-Node Compression

Cl A0 Cl A1 Cl B1 Cl B2

21

Clustering Contributions

� Novel hierarchical clustering algorithm

Ð log P time complexity+low overhead

� Compared to w/o clustering

Ð 1 order of magnitude less exec. overhead

Ð 2-3 orders of magnitude less space

� Trace accuracy:

Ð Over 85% for strong scaling

Ð Over 93% for weak scaling

� Hierarchical clustering
� very effective technique

Ð suitable for extreme-scale computing

22

HPC Resilience

1. Scalable network overlay (ICS'06)
± track live nodes, group communication

2. Reactive fault tolerance (IPDPS'07, Linux'11, ICPADS'11)
± job pause � 70% reduced resubmit overhead
± Incr. Chkpts � 1:9 full/incr. Ratio best, reduce I/O

3. Proactive fault tolerance (ICS'07, SC'08, JPDC'12)
± process virt. � ½ overhead of OS, health monitor
± live migration � ½ # chkpts
± back migration � wins if >10% work left

4. Redundancy + SDC Handling (ICDCS'12, SC'12, Cluster'15, ICS'16)
± 2x # nodes � 2x # jobs: capacity not capability comp.
± dual for SDC check / triple SDC correction (msgs, RAM, I/O)

5. Algorithm-based Fault tolerance (IPDPS'14. Chen et al., HPDC'15)
± Complements above, sign. less overhead, only dense linear algebra
± Model SDC for numerical algorithms � Sandbox: run thru errors

6. Predict which exact node will fail when (HPDC'18+SC'18)
± Enables proactive actions � can reduce C/R frequency even more

� Code contributed to BLCR, available for Open MPI, later RedMPI

23

Machine Learning to Predict Failures in HPC

� Collaboration w/ several Nat'l Labs
Ð ORNL Summit Supercomputer: #1 fastest in the world

� Problem: failures happen, compute nodes stop working
Ð Same as Cloud computing when you scale out
Ð more nodes/components � more failures

� Hypothesis: can predict failures timely for evasive action

24

TODAY HPC Node Failures TOMORROW

A

B
C

D
A

B C

D

Checkpoint/
Restart

High Overhead

Computation and Power Wastage

Quarantine
Failing Node A

We provide a Failure Predictor:
� Deep Learning used for prediction
�Which node will fail? When?

Proactive Fault Tolerance

Node A will fail in 5 minutes !!

Reschedule the job
allocated on A & B to
B & D

Migrate Processes
from A to D

25

How to Predict Failures in HPC [SC'18,HPDC'18�]

� Approach: Long-Short-Term-Memory based machine learning
Ð Train to recognize anomaly patters on systems logs
Ð Predict which component is about to fail
Ð Determine location of failing component
Ð Take evasive action, e.g., migrate computation to new node

� 2-3 min. lead time to failure
Ð Accuracy ³ 83%, F1 <= 89.99%
Ð FP Rate:16.66% to 25%
Ð Proactive: cloning (90 secs),

job migration (13-24 secs)

� Lead Time Sensitivity with Failure Classes
Ð Lead times to Kernel Panics are short (58.87 secs)
Ð MCE and Hardware-caused failures longer keads (124-160 secs)

26

HPC Resilience + ML to Predict Faults
(Subhendu Behera, ORNL+LLNL)

� Problem: failures happen, compute nodes stop working

� Hypothesis: can predict failures timely for evasive action

� Approach: Long-Short-Term-Memory based ML [HPDC'18,SC'18,¼]

� Live migration vs. checkpointing w/ failure prediction [HPDC'20]
Ð considers burst buffers
Ð 20-86% reduced overhead

� IPDPS'22: asynchronous safeguard chkpts
Ð Prioritized, add'l savings 4-60%

� Fault propagation within Flux job scheduler
Ð within+across jobs � coordinated
Ð dynamically adaptive workflow scheduling
Ð persistent storage abstraction for workflow resilience

27

Quantum HW/SW Stack

� Part of NSF STAQ (Duke) and NSF QLCI RQS (UMD)

� Domain-specific quantum abstractions:
SAT-problems, Physics, Chemistry [SC'22]

� Circuit opts.: at gate+pulse levels

� Algo+noise-aware problem solving [QCE'22]

� Semantic tracking during pgm translation

� HW/SW stack for ion traps [QCE'23]

� Create/exploit multi-qubit native gates

� Sparse tensor networks for quantum
simulation � SIMD+multi-node

DAX

QISKI

T

ARTIQ

ARTIQ

Compiler

Qiskit

Provider

28

Thanks for the Invitation! Questions?

Pubs:

https://moss.csc.ncsu.edu/~mueller/publications

N

C U

S

