
Celerity
Distributed-memory Accelerator

Programming Made Easy
Philipp Gschwandtner, Peter Thoman,

Philip Salzmann, Fabian Knorr, Gabriel Mitterrutzner
University of Innsbruck, Austria

The Post-AllScale Era

• AllScale had several shortcomings
• immense amount of engineering effort to maintain a C++ toolchain (over 10 years

incl. preparatory work, up to 10 people working in parallel)

• esp. constraint-based analysis framework, first implemented in C++, redone in Haskell

• many similar attempts failed, hard to convince reviewers without active user base

• API based on modern C++ (higher-order functions and lambdas)

• no real user base besides project partners

APART 2024 - Celerity – Philipp Gschwandtner 2

Some Background

• Currently, distributed memory clusters with accelerators
provide some of the best cost- and energy-efficiency in HPC

 10 out of the top 10 entries in the September 2022
“Green 500” list are accelerator clusters (9/10 GPUs)

• However, from a user perspective, these systems
combine two very challenging development aspects

• Distributed memory programming, and

• Accelerator computing

APART 2024 - Celerity – Philipp Gschwandtner 3

Accelerator Cluster Programming

Current mainstream approaches:

• “MPI + X”, with “X” generally being CUDA (or OpenCL, or …)
⇒ Requires developers to deal with both the complexities of

distributed data and a relatively low-level accelerator API

• Libraries and/or skeleton frameworks which abstract entire computation
⇒ Limited to specific domains, often hard to extend

APART 2024 - Celerity – Philipp Gschwandtner 4

The Celerity Idea
• A high-level API designed from the ground up for accelerator clusters

• Allows to constrain data structures and processing patterns to ones efficient on
accelerators less complex than fully general distributed memory programming,
does not require a compiler (see AllScale)

• Based on the SYCL Khronos industry standard
• Single-source, modern C++ for accelerators (“embedded DSL”)

• Designed to run on most hardware supported by OpenCL

• Several implementations and plethora of platforms

• No explicit distribution, synchronization or communication
• Derived entirely from data flow

APART 2024 - Celerity – Philipp Gschwandtner 5

Main SYCL Implementations

APART 2024 - Celerity – Philipp Gschwandtner 6Source: Khronos SYCL landing page

Research/Experimental SYCL Implementations

APART 2024 - Celerity – Philipp Gschwandtner 7Source: Khronos SYCL landing page

Celerity – Jacobi Example (1/2)

APART 2024 - Celerity – Philipp Gschwandtner 8

 Buffers encapsulate 1D-3D dense,
typed data
 Accesses are declared explicitly

 Command groups are submitted
to the distributed queue
 Tying kernels to the buffers they

operate on

 Kernels execute over N-
dimensional range of (virtual)
threads

Celerity – Jacobi Example (2/2)

APART 2024 - Celerity – Philipp Gschwandtner 9

 Range mappers declare mapping
of kernel subranges to buffer
subranges
 Which data is required to

compute part of the kernel
 This allows splitting of tasks

 This program can run on an
arbitrary number of nodes
 Distributed memory portion is

almost completely hidden from
the user

Celerity – Range Mappers

• Arbitrary functors mapping from a K-dimensional kernel index space ̀ chunk`
to a B-dimensional buffer index space ̀ subrange`

APART 2024 - Celerity – Philipp Gschwandtner 10

Celerity – Range Mappers

• Arbitrary functors mapping from a K-dimensional kernel index space ̀ chunk`
to a B-dimensional buffer index space ̀ subrange`

APART 2024 - Celerity – Philipp Gschwandtner 11

Internal Architecture

APART 2024 - Celerity – Philipp Gschwandtner 12

Accelerators

node 0 JobJobJob

Command Graph

C
C

C

C
C

C

Source

T
T

T

Task Graph

JobJobJob
C

C

C

C
C

C

node 1
T

T

T

JobJobJob
C

C

C

C
C

C
node 2

T
T

T

D
is

tr
ib

ut
ed

 /
pa

ra
lle

l o
ve

r t
he

 c
lu

st
er

Application thread Command Generation thread Executor threads

Asynchronous and parallel across threads on each node

Software Engineering Around Celerity

• Automatic tests
• CI/CD: automatically triggered

distributed-memory tests with SLURM

• Coverage: 93.929%

• Performance regressions

• Performance Trace Visualization
via tracy

• Clang plugin for statically-detectable
errors

APART 2024 - Celerity – Philipp Gschwandtner 13

https://github.com/celerity/celerity-runtime/actions/workflows/celerity_ci.yml
https://coveralls.io/github/celerity/celerity-runtime?branch=master

Software Engineering Around Celerity

• Automatic tests
• CI/CD: automatically triggered

distributed-memory tests with SLURM

• Coverage: 93.929%

• Performance regressions

• Performance Trace Visualization
via tracy

• Clang plugin for statically-detectable
errors

APART 2024 - Celerity – Philipp Gschwandtner 14

https://github.com/celerity/celerity-runtime/actions/workflows/celerity_ci.yml
https://coveralls.io/github/celerity/celerity-runtime?branch=master

Software Engineering Around Celerity

• Automatic tests
• CI/CD: automatically triggered

distributed-memory tests with SLURM

• Coverage: 93.929%

• Performance regressions

• Performance Trace Visualization
via tracy

• Clang plugin for statically-detectable
errors

APART 2024 - Celerity – Philipp Gschwandtner 15

https://github.com/celerity/celerity-runtime/actions/workflows/celerity_ci.yml
https://coveralls.io/github/celerity/celerity-runtime?branch=master

Data Tracking

• In order to generate the command graph, Celerity needs to track which
command last updated which location(s) for each buffer
• More specifically, will have updated at the point of time currently being generated,

as command generation runs significantly ahead of execution

(Simplified) example of tracking information over time for a 2D stencil on 2 nodes:

APART 2024 - Celerity – Philipp Gschwandtner 16

Init

Init

Node 0

Node 1

Compute 0
(self)

Compute 0
(other)

Compute 0
(other)

Compute 0
(self)

Compute 0
(self)

Received 1
(other)

(other)
Received 1

Compute 0
(self)

Compute 1
(self)

Compute 1
(other)

Compute 1
(other)

Compute 1
(self)

After initialization After 1st compute step After transfers for
2nd compute step

After 2nd compute step

Kernel Kernel

Generative Access Patterns

APART 2024 - Celerity – Philipp Gschwandtner 17

Room Response Simulator Access Pattern

• Example of a 2D generative access pattern

• 1 new row of a 2D buffer is written every time step

• All previous rows are read

What does this mean for data tracking?

APART 2024 - Celerity – Philipp Gschwandtner 18

Compute 0

Compute 0

Node 0

Node 1

Compute 0 Received 1

Compute 1

Received 1 Compute 0

Compute 1

Compute 0 Received 1

Compute 1 Received 2

Compute 2 Received 3

Compute 3 Received 4

Compute 4

Received 1 Compute 0

Received 2 Compute 1

Received 3 Compute 2

Received 4 Compute 3

Compute 4

…

…

t1 t2 t5

Impact on Command Graph Generation

Computational effort of dependency tracking and generation grows
with algorithm iterations!

APART 2024 - Celerity – Philipp Gschwandtner 19

Compute 1 Compute 1

Compute 2 Compute 2

Compute 0 Compute 0

Compute 3 Compute 3

Compute 4 Compute 4

Compute 0 Compute 0

Compute 0 Received 1
Compute 1

Received 1 Compute 0
Compute 1

Compute 0 Received 1
Compute 1 Received 2
Compute 2 Received 3
Compute 3 Received 4
Compute 4

Received 1 Compute 0
Received 2 Compute 1
Received 3 Compute 2
Received 4 Compute 3

Compute 4

Compute 0 Received 1
Compute 1 Received 2
Compute 2

Received 1 Compute 0
Received 2 Compute 1

Compute 2

Compute 0 Received 1
Compute 1 Received 2
Compute 2 Received 3
Compute 3

Received 1 Compute 0
Received 2 Compute 1
Received 3 Compute 2

Compute 3

… push command

… receive command

… command dependency

… inter-node dependency
 (implicit)

… on node 1

… on node 0

Command Horizons

APART 2024 - Celerity – Philipp Gschwandtner 20

Horizons Overview

• Goal: solve the generative access patterns tracking issue
• Asynchronously, and without additional communication

• With a configurable tradeoff between tracking fidelity and overhead

• 3 important concepts:
1. Decision Making – when to create a new Horizon

2. Horizon Generation – what happens to the command graph when a Horizon is created

3. Horizon Application – effect on tracking data structures when a Horizon is applied

APART 2024 - Celerity – Philipp Gschwandtner 21

Decision Making

• Simple Approach:
• Track the critical path length while

generating the task graph

• Computationally very inexpensive

• Every time a multiple of 𝑆𝑆 is reached for
the first time, generate a Horizon task

• We call 𝑆𝑆 the Horizon Step Size

APART 2024 - Celerity – Philipp Gschwandtner 22

Example 𝑆𝑆 = 2

T1
C=0

T2
C=1

T3
C=1

T4
C=2

H1

Horizon Generation and Application

APART 2024 - Celerity – Philipp Gschwandtner 23

Compute 0 Compute 0

Horizon 0 Received 1
Compute 1

Received 1 Horizon 0
Compute 1

Horizon 3

Received 4
Compute 4

Horizon 3

Received 4
Compute 4

Horizon 1
Received 2

Compute 2

Horizon 1
Received 2

Compute 2

Horizon 2

Received 3
Compute 3

Horizon 2

Received 3
Compute 3

H0 generated

H1 generated
H0 applied

H2 generated
H1 applied

Horizon 0 Horizon 0

Horizon 1 Horizon 1

Horizon 2 Horizon 2

Compute 0 Compute 0

Compute 1 Compute 1

Compute 2 Compute 2

H3 generated
H2 applied

Horizon 3 Horizon 3
Compute 3 Compute 3

Compute 4 Compute 4

H3 applied

Example:
 RSIM pattern

 𝑆𝑆 = 1
 Simplified

…

Horizon 0 generated:
 Dependencies from current

command front
(tracked during graph gen)

Horizon 0 applied:
o Application of Hor. N-1 when

Hor. N is generated
 Subsumes all older (id < Hor.)

entries in tracking data structure
 Subsequent dependencies will

be redirected to Horizon

…

Performance Evaluation

APART 2024 - Celerity – Philipp Gschwandtner 24

Microbenchmarks – 2D Generative Access

APART 2024 - Celerity – Philipp Gschwandtner 25

0,13

0,25

0,50

1,00

2,00

4,00

8,00

16,00

32,00

1 17 33 49 65 81 97 113 129 145 161 177 193 209 225 241

Pe
r-i

te
ra

tio
n

tim
e

(m
s)

Iteration number

1 2 4 16 none

512 GPUs

Additional Microbenchmarks

APART 2024 - Celerity – Philipp Gschwandtner 26

0,125

0,250

0,500

1,000

2,000

4,000

1 17 33 49 65 81 97 113 129 145 161 177 193 209 225 241

Pe
r-i

te
ra

tio
n

tim
e

(m
s)

Iteration number

1 2 4
16 none

1D

0

5

10

15

20

0,0

200,0

400,0

600,0

800,0

1000,0

1 2 4 16 none
To

ta
l h

or
izo

n
ap

pl
ica

tio
n

tim
e (

m
s)

To
ta

l d
ry

-ru
n

tim
e

(m
s)

Horizon Step Size

1D microbenchmark, 256 time steps, 512 GPUs

 Total dry-run time (ms)
 Total horizon time (ms)

0,125
0,250
0,500
1,000
2,000
4,000
8,000

16,000
32,000

1 17 33 49 65 81 97 113 129 145 161 177 193 209 225 241

Pe
r-i

te
ra

tio
n

tim
e (

m
s)

Iteration number

1 2 4
16 none

3D

0

5

10

15

20

0,0

1000,0

2000,0

3000,0

4000,0

1 2 4 16 none

To
ta

l h
or

izo
n

ap
pl

ica
tio

n
tim

e (
m

s)

To
ta

l d
ry

-ru
n

tim
e

(m
s)

Horizon Step Size

3D microbenchmark, 256 time steps, 512 GPUs

 Total dry-run time (ms)
 Total horizon time (ms)

Overhead on Non-generative Applications

• Horizon overhead is negligible
• Recall that this is entirely asynchronous to actual computation!
• 𝑆𝑆 = 1 for Nbody, a degenerate case

• Horizons actually have a minor positive impact even for non-generative apps
• Related to data structure cleanup

APART 2024 - Celerity – Philipp Gschwandtner 27

0,00

0,10

0,20

0,30

0,40

0,50

0,60

40,0

45,0

50,0

55,0

60,0

65,0

1 2 4 16 none

To
ta

l h
or

iz
on

 ti
m

e
(m

s)

To
ta

l d
ry

-ru
n

tim
e

(m
s)

WaveSim, 1000 time steps / 512 GPUs

 Total dry-run time (ms)

 Total horizon time (ms)

 0,0

 5,0

10,0

15,0

20,0

25,0

30,0

250,0

270,0

290,0

310,0

330,0

350,0

1 2 4 16 none

To
ta

l h
or

iz
on

 ti
m

e
(m

s)

To
ta

l d
ry

-ru
n

tim
e

(m
s)

Nbody, 250 time steps / 512 GPUs

 Total dry-run time (ms)

 Total horizon time (ms)

Real-World RSIM Evaluation

APART 2024 - Celerity – Philipp Gschwandtner 28

4

8

16

32

64

128

256

1 2 4 8 16 32

To
ta

l S
im

ul
at

io
n

Ti
m

e (
s)

GPUs:

 Horizon Step Size 2

 No Horizons

Horizons Summary
• Advantages:

• Independent of the specifics of the data access pattern

• Caps the per-node dependencies which need to be tracked

• High-fidelity dependency information is maintained locally

• Generation is efficient – required information can be tracked with a small fixed
overhead during command generation

• Application is efficient – due to the numbering scheme of commands no graph traversal
is required

• No additional communication is required

• Potential downside:
• Independent commands might be sequentialized No impact in practice with 𝑆𝑆 ≥ 2

APART 2024 - Celerity – Philipp Gschwandtner 29

General Performance/Scalability: WaveSim

• 2D wave equation over time

• 5-point stencil

• 𝑁𝑁𝐺𝐺𝐺𝐺𝐺𝐺 × 2.45 ⋅ 104 side length

• 93% efficiency on 128 GPUs

• Marconi-100, weak scaling,
median of 10 runs + warmup

APART 2024 - Celerity – Philipp Gschwandtner 30

Ongoing Work and Future Ideas

• improve performance
• leveraging collective communication (without any API changes/additions)

• dynamic load distribution

• extend tools and tool support

• auto-generate (some) range mappers
• involves compiler work (again), though much simpler than AllScale

• provide high-level wrappers and (skeleton) libraries to lift the user
requirement of mastering modern C++
• Python (numpy), Julia, Matlab, etc.

APART 2024 - Celerity – Philipp Gschwandtner 31

Open Issues and Problems

• Most users really don’t want to write C++
• AllScale paper review (paraphrased):

“I’d rather match my send and receive calls in C than write complicated C++”

• Based on SYCL, which can’t compete with CUDA (yet)

• Academic project, dependent on funding and recruitment options

APART 2024 - Celerity – Philipp Gschwandtner 32

Thank you for your attention! Questions?

https://celerity.github.io

https://discord.gg/k8vWTPB

Fabian Knorr
Philip Salzmann
Gabriel Mitterrutzner

Facundo Molina
Peter Thoman
Markus Wippler

https://celerity.github.io/
https://discord.gg/k8vWTPB

	Celerity �Distributed-memory Accelerator Programming Made Easy
	The Post-AllScale Era
	Some Background
	Accelerator Cluster Programming
	The Celerity Idea
	Main SYCL Implementations
	Research/Experimental SYCL Implementations
	Celerity – Jacobi Example (1/2)
	Celerity – Jacobi Example (2/2)
	Celerity – Range Mappers
	Celerity – Range Mappers
	Internal Architecture
	Software Engineering Around Celerity
	Software Engineering Around Celerity
	Software Engineering Around Celerity
	Data Tracking
	Generative Access Patterns
	Room Response Simulator Access Pattern
	Impact on Command Graph Generation
	Command Horizons
	Horizons Overview
	Decision Making
	Horizon Generation and Application
	Performance Evaluation
	Microbenchmarks – 2D Generative Access
	Additional Microbenchmarks
	Overhead on Non-generative Applications
	Real-World RSIM Evaluation
	Horizons Summary
	General Performance/Scalability: WaveSim
	Ongoing Work and Future Ideas
	Open Issues and Problems
	Thank you for your attention! Questions?

