Celerity
Distributed-memory Accelerator

Programming Made Eagtr

Philipp Gschwandtner, Peter Thoman,
Philip Salzmann, Fabian Knorr, Gabriel Mitterrutzner
University of Innsbruck, Austria

FzQ

D PS M universitat
iInnsbruck

Distributed and Parallel Systems

L Celerity

igh-level C

The Post-AllScale Era

e AllScale had several shortcomings

® immense amount of engineering effort to maintain a C++ toolchain (over 10 years
incl. preparatory work, up to 10 people working in parallel)

® esp. constraint-based analysis framework, first implementedin C++, redone in Haskell
e many similar attempts failed, hard to convince reviewers without active user base

® APl based on modern C++ (higher-order functions and lambdas)

® no real user base besides project partners

APART 2024 - Celerity — Philipp Gschwandtner

Some Background

® Currently, distributed memory clusters with accelerators
provide some of the best cost- and energy-efficiency in HPC

— 10 out of the top 10 entries in the September 2022
“Green 500” list are accelerator clusters (9/10 GPUs)

e However, from a user perspective, these systems
combine two very challenging development aspects

e Distributed memory programming, and

e Accelerator computing

APART 2024 - Celerity — Philipp Gschwandtner

The

S0Q

Accelerator Cluster Programming

Current mainstream approaches:

e “MPI + X”, with “X” generally being CUDA (or OpenCL, or ...)

—> Requires developers to deal with both the complexities of
distributed data and a relatively low-level accelerator API

e Libraries and/or skeleton frameworks which abstract entire computation

—> Limited to specific domains, often hard to extend

APART 2024 - Celerity — Philipp Gschwandtner

The Celerity Idea

® A high-level API designed from the ground up for accelerator clusters

e Allows to constrain data structures and processing patterns to ones efficient on
accelerators = less complex than fully general distributed memory programming,
does not require a compiler (see AllScale)

e Based on the SYCL Khronos industry standard

® Single-source, modern C++ for accelerators (“embedded DSL”) SYCL

® Designed to run on most hardware supported by OpenCL

e Several implementations and plethora of platforms

® No explicit distribution, synchronization or communication

e Derived entirely from data flow

APART 2024 - Celerity — Philipp Gschwandtner

Main SYCL Implementations

SYCL, OpenCL and SPIR-V, as open industry
standards, enable flexible integration and
deployment of multiple acceleration technologies

SYCL

Source Code

SYCL enables Khronos to influence
ISO C++ to (eventually) support
heterogeneous compute

intel /

C codeplay* C ComputeCpp
£ DPC++ ComputeCpp
Uses LLVM/Clang Multiple
Part of oneAPI Backends
?f%q"‘e/
Anv CPU 77~ - < .-}
[ANVASES] OpenCL nviDiA.
s | NVIDIA GPUs
NVIDIA r 0/ EL
GPUs RO pen
Cin (SPIR.
P AMD GPUs Intel CPUs
Intel FPGAs
@R' Intel GPUs AMD GPUs
Intel CPUs (depends on driver stack)
Intel GPUs Arm Mali
Intel FPGAs IMG PowerVR

APART 2024 -

Renesas R-Car

Celerity — Philipp Gschwandtner

UNIVERSITAT
HEIDELBERG

hipSYCL
Multiple Backends

\
OpenMP !
'3
Any CPU 1 &
1 5
|
RO| Level Zero
Cm
Intel GPUs

AMD GPUs

Source: Khronos SYCL landing page

Research/Experimental SYCL Implementations

SYCL, OpenCL and SPIR-V, as open industry
standards, enable flexible integration and
deployment of multiple acceleration technologies

G

Source Code

—

M universitat

M universitat
innsbruck

innsbruck
4

Huawei
SYCLops

v

ylkan

XILINX FPGAs
POCL

(open-source OpenCL
supporting CPUs and

Pl

openct. GPIR.

NVIDIA GPUs and more)

triSYCL
Open source
test bed

MotorSYCL

DPC++ fork
”~

SYCL enables Khronos to influence
ISO C++ to (eventually) support
heterogeneous compute

\

Inteon
Poligeist

SYCL TSUBASA

DPC++ fork

HUAWEI
SYCL/DPC++
Huawei
Ascend Al

DPC++ fork

APART 2024 - Celerity — Philipp Gschwandtner

A VEO
v AR HPC
TBB \% SDK Intel CPUs Ascend 910
NEC VEs Al processor
Any CPU X
XILINX Versal
ACAP LL IR t .
FSG " LLm IR Multiple Backends in Development
HLS SYCL on even more low-level frameworks.
For more information: http://sycl.tech

Source: Khronos SYCL landing page

Celerity — Jacobi Example (2/2)

using namespace sycl; = Buffers encapsulate 1D-3D dense,

for(int i = @; i < num_iterations; ++i) {
queue.submit([=](celerity::handler& cgh) { tYPEd data
auto nbr = celerity::access::neighborhood<2>{1, 1}; m Accesses are declared EXpliCitly
auto 020 = celerity::access::one_to_one{};
celerity::accessor in(in_buf, cgh, nbr, read only); n Command grOUpS are SmeittEd
celerity::accessor out(out buf, cgh, o020, write only, no _init); to the distributed queue
cgh.parallel for<class Jacobi>(range<2>{N - 2, N - 2}, {1, 1},
[=](item<2> itm) { = Tying kernels to the buffers they
const auto i = itm[@]; Operate on
const auto j = itm[1];
out[{i, j}] = (in[{i, J - 1}] + in[{1i, J + 1}] + = Kernels execute over N-
b, il = ne gl < Al < Qo 3Rl A o dimensional range of (virtual)
’ threads

})s
std::swap(in_buf, out_buf);

APART 2024 - Celerity — Philipp Gschwandtner 8

Celerity —Jacobi Example (2/2)

_ = Range mappers declare mapping
using namespace sycl; fk | b o 5
for(int i = 0; 1 < num_iterations; ++i) { OT kernel subranges to butrer
queue.submit([=](celerity::handler& cgh) { SUbranges

celerity::access::neighborhood<2>{1, 1}; . . : .
auto 020 = celerity::access::one_to_one{}; Which data is reqUIred to
celerity::accessor in(in_buf, cgh, nbr, read_only); CompUte Pal’t of the kernel

celerity::accessor out(out buf, cgh, 020, write only, no _init); = ThIS aIIows spllttlng oftasks
cgh.parallel for<class Jacobi>(range<2>{N - 2, N - 2}, {1, 1},

[=](item<2> itm) {

auto nbr

const auto i = itm[@]; .
const auto j = itm[1]; = This program can run on an
outl{i, Jh = (nl{i, J - 1]+ Inl{1, 3 + 1} + arbitrary number of nodes
in[{i - 1, j}] + in[{1 + 1, J}]) / 4.F; i -
1 * Distributed memory portion is
}); almost completely hidden from
std::swap(in_buf, out_buf); the user

APART 2024 - Celerity — Philipp Gschwandtner 9

Celerity — Range Mappers

e Arbitrary functors mapping from a K-dimensional kernel index space chunk’
to a B-dimensional bufferindex space 'subrange’

one_to_one()
one_to_one() 1
Kernel Index Space Buffer Index Space

APART 2024 - Celerity — Philipp Gschwandtner 10

Celerity — Range Mappers

e Arbitrary functors mapping from a K-dimensional kernel index space chunk’

to a B-dimensional bufferindex space 'subrange’

e

Kernel Index Space

—

—

——]

Buffer Index Space

APART 2024 - Celerity — Philipp Gschwandtner

11

Internal Architecture

Source Task Graph Command Graph Accelerators

o A

3 —— @ ©

a2 node0 == » 10— 10-Q SYCL.
£ — ® ©

= || nodel = — O — © Q] Job SYCL.
g = @ @ J C
g node 2 __é > Gg@ — Job l (S:CL,M
AV

Applicationthread Command Generation thread Executor threads

< 4

Asynchronous and parallel acrossthreads on each node

APART 2024 - Celerity — Philipp Gschwandtner 12

Software Engineering Around Celerity

e Automatic tests

github-actions bot commented 2 d

° : automatically triggered
distributed-memory tests With SLURM Check-perf-impact results: (f7ef1830fe7f830eeed 17b0b5a37c2ef)

A Significant slowdown (> 1.25x) in some microbenchmark results: building command gr:

°® Cove rage: M nodes - 1 > immediate submission to a scheduler thread [/ contracting tree topology
g . # Significant speedup (<0.80x) in some microbenchmark results: building command grap

nodes - 4 > immediate submission to a scheduler thread / contracting tree topology
® Performance regressions

Relative execution time per category: (mean of relative medians)

» command-graph : 1.00x
s graph-nodes : 1.00x
* grid : 1.00x

® Performance Trace Visualization T
Via tra Cy + system : 1.070x

+ task-graph : 1.00x

No Data No Data

® Clang plugin for statically-detectable
errors

APART 2024 - Celerity — Philipp Gschwandtner

13

https://github.com/celerity/celerity-runtime/actions/workflows/celerity_ci.yml
https://coveralls.io/github/celerity/celerity-runtime?branch=master

Software Engineering Around Celerity

e Automatic tests

° : automatically triggered
distributed-memory tests with SLURM

® Coverage:

® Performance regressions

® Performance Trace Visualization
via tracy

¢ Clang plugin for statically-detectable
errors

APART 2024 - Celerity — Philipp Gschwandtner

14

https://github.com/celerity/celerity-runtime/actions/workflows/celerity_ci.yml
https://coveralls.io/github/celerity/celerity-runtime?branch=master

Software Engineering Around Celerity

e Automatic tests

° : automatically triggered
distributed-memory tests with SLURM

® Coverage:

® Performance regressions

® Performance Trace Visualization
via tracy

® Clang plugin for statically-detectable
errors

APART 2024 - Celerity — Philipp Gschwandtner 15

https://github.com/celerity/celerity-runtime/actions/workflows/celerity_ci.yml
https://coveralls.io/github/celerity/celerity-runtime?branch=master

Data Tracking

® |n order to generate the command graph, Celerity needs to track which
command last updated which location(s) for each buffer

e More specifically, will have updated at the point of time currently being generated,
as command generation runs significantly ahead of execution

(Simplified) example of tracking information over time for a 2D stencil on 2 nodes:

Compute0 Compute 1

(self) (self) (self)

Node 0 Init \\ .

Compute 0 \ Pl Received Compute 1

(other) \\ ,’ (other) (other)
4 C 0 N (other) = c 1

te ompute

Kernel ompy 7 N Kernel
(other) P LY Received 1 (other)

Compute 1
(self)

Init
Mo | Compute0 4 Compute0
(self) (self)

After initialization After 1t compute step After transfers for After 2" compute step
2"d compute step

APART 2024 - Celerity — Philipp Gschwandtner 16

Generative Access Patterns

APART 2024 - Celerity — Philipp Gschwandtner 17

Room Response Simulator Access Pattern

e Example of a 2D generative access pattern
® 1 new row of a 2D buffer is written every time step
e All previous rows are read

- What does this mean for data tracking?

t1 t2 t5

0 ute j
Node 0 -

0 ute
Node 1 -

APART 2024 - Celerity — Philipp Gschwandtner

18

Impact on Command Graph Generation

Compute 0

Compute 0 Compute 0

..onnode0
..onnode 1

... push command

Received 1

‘X223 1|

.. receive command
.. command dependency
_.~~"...inter-node dependency
Received 1 (implicit)

Compute 1 |Received 2 Compute 1
Compute 2 Compute 2

I i

1
Received 1
Received 2

, o Received2
Compute 4 Compute 4

— Computational effort of dependency tracking and generation grows
with algorithm iterations!

APART 2024 - Celerity — Philipp Gschwandtner

Command Horizons

APART 2024 - Celerity — Philipp Gschwandtner 20

Horizons Overview

® Goal: solve the generative access patterns tracking issue
e Asynchronously, and without additional communication

e With a configurable tradeoff between tracking fidelity and overhead

® 3 important concepts:

1. Decision Making — when to create a new Horizon

2. Horizon Generation— what happens to the command graph when a Horizon is created

3. Horizon Application — effect on tracking data structures when a Horizon is applied

APART 2024 - Celerity — Philipp Gschwandtner

21

Decision Making

e Simple Approach:

e Track the critical path length while
generating the task graph

e Computationallyvery inexpensive

e Every time a multiple of S is reached for
the first time, generate a Horizon task

e We call S the Horizon Step Size

APART 2024 - Celerity — Philipp Gschwandtner

Example S = 2

22

Horizon Generation and Application

Horizon 0 gene(ated:
-> Dependencies from current

HO generated W
command front SRR s o T O i Iy = >

(traCked during graph gen) Horizon 0 | Received 1 f Received 1
Horizon 0 applied: H1 generatel /" _ <X _ e <
. . HO applied)
o Application of Hor. N-1 when F
Hor.Nis generated Received 2) Received 2
- Subsumes all older (id < Hor.) e

entries in tracking data structure Wi'applied "—"'—" — LT =

- Subsequent dependencies will l
y Received 3 | Received 3
IEW

be redirected to Horizon
H3 generatey = v _~ Horizon 3

Compute 4 Compute 4

... » Received 4)| Received 4

H3 applied

Example:
RSIM pattern
S=1
Simplified

APART 2024 - Celerity — Philipp Gschwandtner 23

Performance Evaluation

APART 2024 - Celerity — Philipp Gschwandtner 24

Microbenchmarks — 2D Generative Access

32,00
......... 1 2 4 16 ——none

16,00
8,00
4,00
2,00
1,00

Per-iteration time (ms)

0,50

cete
........
..
...

0,25

0,13
1 17 33 49 65 81 97 113 129 145 161 177 193 209 225 241

512 GPUs lteration number

APART 2024 - Celerity — Philipp Gschwandtner 25

1D

4,000
2 2,000
1,000

0,500

Per-iteration time (|

0,250

0,125

1000,0

—

800,0
600,0

run time (ms

= 400,0

Total dr

200,0

0,0

1

Additional Microbenchmarks

......... 1 2 4 A32'000
e | 6 none @ 16,000
= 8,000
E 4,000
S 2,000
7 ® 1,000
A M,v,!,n,ﬂ.u.u,4,u,~ AV LA VYRV RV VYAV VYUY VVYY Y VYTV VYT VS %, 0,500
.. 5 0250
0,125
17 33 49 65 81 97 113 129 145 161 177 193 209 225 241 1 17 33 49 65 81 97 113129145161177193209 225241
Iteration number 3D Iteration number
1D microbenchmark, 256 time steps, 512 GPUs _ 3D microbenchmark, 256 time steps, 512 GPUs

20 g 4000,0 : 20 2

---+--- Total dry-run time (ms) * @ _ --+--- Total dry-run time (ms) . Fl

| --a-- Total horizon time (ms) 15 ¢ £ 3000,0 --4-- Total horizon time (ms) 15 =

P A 'I/ % g . A\ '/ %

10 5 S 2000,0 e T 4 10 £

‘.~'§ _ ," ,//\\ 2 'g A ’ ,1'}’\ g

~~~~~ A--- A SN 5 S = 1000,0 A A A 5 R

‘— __________ ‘ \, _8 |2 -’/l .\ _g

" -------- "' ------------- AR I B R I L L \ =

& 0 3 0,0 @-oooooeoe s L & & 0 g

1 2 4 ) 16 none 1 2 4 16 none
Horizon Step Size Horizon Step Size
APART 2024 - Celerity — Philipp Gschwandtner 26




Overhead on Non-generative Applications

WaveSim, 1000 time steps / 512 GPUs Nbody, 250 time steps / 512 GPUs
65,0 0,60 350,0 30,0
---+--- Total dry-run time (ms) . .
2 2 @ 2 »
E 60,0 —A\— --a-- Total horizon time (ms) [ 0,50 % £ 3300 A g
(«B] \ . - ()
E \ 040 E = Y <+ 200 £
= 550 * PG G—— o = = 310,0 — * =
:.“, \.\ --- - A 4 0'30 g > '\’ 15,0 8
£ 50,0 020 S 2 290,0 -+ Total dry-runtime (ms) | 100 5
E 450 ."‘\. 3 T‘é’ 270.0 .‘-\ --4-- Total horizon time (ms) ' §
, ~a 0,10 = — ) \ - 50
40,0 A A— 0,00 250,0 Y - A= A A 0,0
1 2 4 16 none 1 2 4 16 none

® Horizon overhead is negligible
e Recall that this is entirely asynchronous to actual computation!
e S =1 for Nbody, a degenerate case

® Horizons actually have a minor positive impact even for non-generative apps
* Related to data structure cleanup

APART 2024 - Celerity — Philipp Gschwandtner 27



Total Simulation Time (s)

Real-World RSIM Evaluation

256
_____________ 4
128 L >
- - P
64 N = o
32 N S
16 ke
- - Horizon Step Size 2 " S
g |  ArPoreonStepSizez o A _—
--#- No Horizons
4
GPUs: 1 2 4 8 16 32

APART 2024 - Celerity — Philipp Gschwandtner

28



Horizons Summary

® Advantages:
¢ Independent of the specifics of the data access pattern
e Caps the per-node dependencies which need to be tracked
e High-fidelity dependency information is maintained locally

e Generationis efficient—required information can be tracked with a small fixed
overhead during command generation

e Applicationis efficient— due to the numbering scheme of commands no graph traversal
is required

* No additional communicationis required

e Potential downside:

* [ndependent commands might be sequentialized > No impact in practice with S = 2

APART 2024 - Celerity — Philipp Gschwandtner 29



< 1(}

J0.4 -

0.0 -

General Performance/Scalability: WaveSim

WaveSim
. : :
~— 2D wave equation over time
\&m\ﬂfw ® 5-point stencil
e
o /N:py X 2.45 - 10* side length
® 93% efficiency on 128 GPUs
= e 1Dx1
—3— 1Dxd
B e Marconi-100, weak scaling,
e median of 10 runs + warmup

GPUs

\\ APART 2024 - Celerity — Philipp Gschwandtner 30



Ongoing Work and Future Ideas

improve performance
® l|everaging collective communication (without any API changes/additions)

e dynamic load distribution
extend tools and tool support
auto-generate (some) range mappers
¢ involves compiler work (again), though much simpler than AllScale

provide high-level wrappers and (skeleton) libraries to lift the user
requirement of mastering modern C++

® Python (numpy), Julia, Matlab, etc.

APART 2024 - Celerity — Philipp Gschwandtner

31



Open Issues and Problems

® Most users really don’t want to write C++

e AllScale paper review (paraphrased):
“Id rather match my send and receive calls in C than write complicated C++”

e Based on SYCL, which can’t compete with CUDA (yet)

e Academic project, dependent on funding and recruitment options

APART 2024 - Celerity — Philipp Gschwandtner

32



Thank you for your attention! Questions?

uroHPC

oint Undertaking Fabian Knorr Facundo Molina
Philip Salzmann Peter Thoman

Gabriel Mitterrutzner  Markus Wippler
. LIGATE PP

[

O https://celerity.github.io
m https://discord.gg/k8vWTPB

() D P S B universitat
FZ iInnsbruck

Distributed and Parallel Systems

L Celerity

High-level C++ for Accelerator Clust


https://celerity.github.io/
https://discord.gg/k8vWTPB

	Celerity �Distributed-memory Accelerator Programming Made Easy
	The Post-AllScale Era
	Some Background
	Accelerator Cluster Programming
	The Celerity Idea
	Main SYCL Implementations
	Research/Experimental SYCL Implementations
	Celerity – Jacobi Example (1/2)
	Celerity – Jacobi Example (2/2)
	Celerity – Range Mappers
	Celerity – Range Mappers
	Internal Architecture
	Software Engineering Around Celerity
	Software Engineering Around Celerity
	Software Engineering Around Celerity
	Data Tracking
	Generative Access Patterns
	Room Response Simulator Access Pattern
	Impact on Command Graph Generation
	Command Horizons
	Horizons Overview
	Decision Making
	Horizon Generation and Application
	Performance Evaluation
	Microbenchmarks – 2D Generative Access
	Additional Microbenchmarks
	Overhead on Non-generative Applications
	Real-World RSIM Evaluation
	Horizons Summary
	General Performance/Scalability: WaveSim
	Ongoing Work and Future Ideas
	Open Issues and Problems
	Thank you for your attention! Questions?

