
Celerity
Distributed-memory Accelerator 

Programming Made Easy
Philipp Gschwandtner, Peter Thoman, 

Philip Salzmann, Fabian Knorr, Gabriel Mitterrutzner
University of Innsbruck, Austria



The Post-AllScale Era

• AllScale had several shortcomings
• immense amount of engineering effort to maintain a C++ toolchain (over 10 years 

incl. preparatory work, up to 10 people working in parallel)

• esp. constraint-based analysis framework, first implemented in C++, redone in Haskell

• many similar attempts failed, hard to convince reviewers without active user base

• API based on modern C++ (higher-order functions and lambdas)

• no real user base besides project partners
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Some Background

• Currently, distributed memory clusters with accelerators 
provide some of the best cost- and energy-efficiency in HPC

 10 out of the top 10 entries in the September 2022 
“Green 500” list are accelerator clusters (9/10 GPUs)

• However, from a user perspective, these systems 
combine two very challenging development aspects

• Distributed memory programming, and

• Accelerator computing
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Accelerator Cluster Programming

Current mainstream approaches:

• “MPI + X”, with “X” generally being CUDA (or OpenCL, or …)
⇒ Requires developers to deal with both the complexities of 

distributed data and a relatively low-level accelerator API

• Libraries and/or skeleton frameworks which abstract entire computation
⇒ Limited to specific domains, often hard to extend
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The Celerity Idea
• A high-level API designed from the ground up for accelerator clusters

• Allows to constrain data structures and processing patterns to ones efficient on 
accelerators  less complex than fully general distributed memory programming, 
does not require a compiler (see AllScale)

• Based on the SYCL Khronos industry standard
• Single-source, modern C++ for accelerators (“embedded DSL”)

• Designed to run on most hardware supported by OpenCL

• Several implementations and plethora of platforms

• No explicit distribution, synchronization or communication
• Derived entirely from data flow
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Main SYCL Implementations
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Research/Experimental SYCL Implementations
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Celerity – Jacobi Example (1/2)
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 Buffers encapsulate 1D-3D dense, 
typed data
 Accesses are declared explicitly

 Command groups are submitted 
to the distributed queue
 Tying kernels to the buffers they 

operate on

 Kernels execute over N-
dimensional range of (virtual) 
threads



Celerity – Jacobi Example (2/2)
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 Range mappers declare mapping 
of kernel subranges to buffer 
subranges
 Which data is required to 

compute part of the kernel
 This allows splitting of tasks

 This program can run on an 
arbitrary number of nodes
 Distributed memory portion is 

almost completely hidden from 
the user



Celerity – Range Mappers

• Arbitrary functors mapping from a K-dimensional kernel index space ̀ chunk` 
to a B-dimensional buffer index space ̀ subrange` 
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Celerity – Range Mappers

• Arbitrary functors mapping from a K-dimensional kernel index space ̀ chunk` 
to a B-dimensional buffer index space ̀ subrange` 

APART 2024 - Celerity – Philipp Gschwandtner 11



Internal Architecture
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Software Engineering Around Celerity

• Automatic tests
• CI/CD: automatically triggered 

distributed-memory tests with SLURM

• Coverage: 93.929%

• Performance regressions

• Performance Trace Visualization 
via tracy

• Clang plugin for statically-detectable 
errors
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Data Tracking

• In order to generate the command graph, Celerity needs to track which 
command last updated which location(s) for each buffer
• More specifically, will have updated at the point of time currently being generated, 

as command generation runs significantly ahead of execution

(Simplified) example of tracking information over time for a 2D stencil on 2 nodes:
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Generative Access Patterns
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Room Response Simulator Access Pattern

• Example of a 2D generative access pattern

• 1 new row of a 2D buffer is written every time step

• All previous rows are read

What does this mean for data tracking?
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Impact on Command Graph Generation

Computational effort of dependency tracking and generation grows 
with algorithm iterations!
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Command Horizons
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Horizons Overview

• Goal: solve the generative access patterns tracking issue
• Asynchronously, and without additional communication

• With a configurable tradeoff between tracking fidelity and overhead

• 3 important concepts:
1. Decision Making – when to create a new Horizon

2. Horizon Generation – what happens to the command graph when a Horizon is created

3. Horizon Application – effect on tracking data structures when a Horizon is applied
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Decision Making

• Simple Approach:
• Track the critical path length while 

generating the task graph

• Computationally very inexpensive

• Every time a multiple of 𝑆𝑆 is reached for 
the first time, generate a Horizon task

• We call 𝑆𝑆 the Horizon Step Size

APART 2024 - Celerity – Philipp Gschwandtner 22

Example 𝑆𝑆 = 2 

T1 
C=0

T2 
C=1

T3
C=1

T4 
C=2

H1



Horizon Generation and Application
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Performance Evaluation
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Microbenchmarks – 2D Generative Access
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Additional Microbenchmarks
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Overhead on Non-generative Applications

• Horizon overhead is negligible 
• Recall that this is entirely asynchronous to actual computation!
• 𝑆𝑆 = 1 for Nbody, a degenerate case

• Horizons actually have a minor positive impact even for non-generative apps
• Related to data structure cleanup
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Real-World RSIM Evaluation
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Horizons Summary
• Advantages:

• Independent of the specifics of the data access pattern

• Caps the per-node dependencies which need to be tracked

• High-fidelity dependency information is maintained locally

• Generation is efficient – required information can be tracked with a small fixed 
overhead during command generation

• Application is efficient – due to the numbering scheme of commands no graph traversal 
is required

• No additional communication is required

• Potential downside: 
• Independent commands might be sequentialized  No impact in practice with 𝑆𝑆 ≥ 2
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General Performance/Scalability: WaveSim

• 2D wave equation over time

• 5-point stencil

• 𝑁𝑁𝐺𝐺𝐺𝐺𝐺𝐺 × 2.45 ⋅ 104 side length

• 93% efficiency on 128 GPUs

• Marconi-100, weak scaling, 
median of 10 runs + warmup
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Ongoing Work and Future Ideas

• improve performance
• leveraging collective communication (without any API changes/additions)

• dynamic load distribution

• extend tools and tool support

• auto-generate (some) range mappers
• involves compiler work (again), though much simpler than AllScale

• provide high-level wrappers and (skeleton) libraries to lift the user 
requirement of mastering modern C++
• Python (numpy), Julia, Matlab, etc.
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Open Issues and Problems

• Most users really don’t want to write C++
• AllScale paper review (paraphrased):

“I’d rather match my send and receive calls in C than write complicated C++”

• Based on SYCL, which can’t compete with CUDA (yet)

• Academic project, dependent on funding and recruitment options
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Thank you for your attention! Questions?

https://celerity.github.io

https://discord.gg/k8vWTPB

Fabian Knorr
Philip Salzmann
Gabriel Mitterrutzner

Facundo Molina
Peter Thoman
Markus Wippler

https://celerity.github.io/
https://discord.gg/k8vWTPB
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