Celerity
Distributed-memory Accelerator

Programming Made Eagtr

Philipp Gschwandtner, Peter Thoman,
Philip Salzmann, Fabian Knorr, Gabriel Mitterrutzner
University of Innsbruck, Austria

FzQ

D PS M universitat
iInnsbruck

Distributed and Parallel Systems

L Celerity

igh-level C



The Post-AllScale Era

e AllScale had several shortcomings

® immense amount of engineering effort to maintain a C++ toolchain (over 10 years
incl. preparatory work, up to 10 people working in parallel)

® esp. constraint-based analysis framework, first implementedin C++, redone in Haskell
e many similar attempts failed, hard to convince reviewers without active user base

® APl based on modern C++ (higher-order functions and lambdas)

® no real user base besides project partners
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Some Background

® Currently, distributed memory clusters with accelerators
provide some of the best cost- and energy-efficiency in HPC

— 10 out of the top 10 entries in the September 2022
“Green 500” list are accelerator clusters (9/10 GPUs)

e However, from a user perspective, these systems
combine two very challenging development aspects

e Distributed memory programming, and

e Accelerator computing
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Accelerator Cluster Programming

Current mainstream approaches:

e “MPI + X”, with “X” generally being CUDA (or OpenCL, or ...)

—> Requires developers to deal with both the complexities of
distributed data and a relatively low-level accelerator API

e Libraries and/or skeleton frameworks which abstract entire computation

—> Limited to specific domains, often hard to extend
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The Celerity Idea

® A high-level API designed from the ground up for accelerator clusters

e Allows to constrain data structures and processing patterns to ones efficient on
accelerators = less complex than fully general distributed memory programming,
does not require a compiler (see AllScale)

e Based on the SYCL Khronos industry standard

® Single-source, modern C++ for accelerators (“embedded DSL”) SYCL

® Designed to run on most hardware supported by OpenCL

e Several implementations and plethora of platforms

® No explicit distribution, synchronization or communication

e Derived entirely from data flow

APART 2024 - Celerity — Philipp Gschwandtner



Main SYCL Implementations

SYCL, OpenCL and SPIR-V, as open industry
standards, enable flexible integration and
deployment of multiple acceleration technologies

SYCL

Source Code
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Research/Experimental SYCL Implementations

SYCL, OpenCL and SPIR-V, as open industry
standards, enable flexible integration and
deployment of multiple acceleration technologies
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Celerity — Jacobi Example (2/2)

using namespace sycl; = Buffers encapsulate 1D-3D dense,

for(int i = @; i < num_iterations; ++i) {
queue.submit([=](celerity::handler& cgh) { tYPEd data
auto nbr = celerity::access::neighborhood<2>{1, 1}; m  Accesses are declared EXpliCitly
auto 020 = celerity::access::one_to_one{};
celerity::accessor in(in_buf, cgh, nbr, read only); n Command grOUpS are SmeittEd
celerity::accessor out(out buf, cgh, o020, write only, no _init); to the distributed queue
cgh.parallel for<class Jacobi>(range<2>{N - 2, N - 2}, {1, 1},
[=](item<2> itm) { = Tying kernels to the buffers they
const auto i = itm[@]; Operate on
const auto j = itm[1];
out[{i, j}] = (in[{i, J - 1}] + in[{1i, J + 1}] + = Kernels execute over N-
b, il = ne gl < Al < Qo 3Rl A o dimensional range of (virtual)
’ threads

})s
std::swap(in_buf, out_buf);
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Celerity —Jacobi Example (2/2)

_ = Range mappers declare mapping
using namespace sycl; fk | b o 5
for(int i = 0; 1 < num_iterations; ++i) { OT kernel subranges to butrer
queue.submit([=](celerity::handler& cgh) { SUbranges

celerity::access::neighborhood<2>{1, 1}; . . : .
auto 020 = celerity::access::one_to_one{}; Which data is reqUIred to
celerity::accessor in(in_buf, cgh, nbr, read_only); CompUte Pal’t of the kernel

celerity::accessor out(out buf, cgh, 020, write only, no _init); = ThIS aIIows spllttlng oftasks
cgh.parallel for<class Jacobi>(range<2>{N - 2, N - 2}, {1, 1},

[=](item<2> itm) {

auto nbr

const auto i = itm[@]; .
const auto j = itm[1]; = This program can run on an
outl{i, Jh = (nl{i, J - 1]+ Inl{1, 3 + 1} + arbitrary number of nodes
in[{i - 1, j}] + in[{1 + 1, J}]) / 4.F; i -
1 * Distributed memory portion is
}); almost completely hidden from
std::swap(in_buf, out_buf); the user
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Celerity — Range Mappers

e Arbitrary functors mapping from a K-dimensional kernel index space chunk’
to a B-dimensional bufferindex space 'subrange’

one_to_one()
one_to_one() 1
Kernel Index Space Buffer Index Space
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Celerity — Range Mappers

e Arbitrary functors mapping from a K-dimensional kernel index space chunk’

to a B-dimensional bufferindex space 'subrange’

e

Kernel Index Space

—

—

—— ]

Buffer Index Space
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Internal Architecture

Source Task Graph Command Graph Accelerators

o A

3 —— @ ©

a2 node0 == » 10— 10-Q SYCL.
£ — ® ©

= || nodel = — O — © Q] Job SYCL.
g = @ @ J C
g node 2 __é > Gg@ — Job l (S:CL,M
AV

Applicationthread Command Generation thread Executor threads

< 4

Asynchronous and parallel acrossthreads on each node
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Software Engineering Around Celerity

e Automatic tests

github-actions  bot commented 2 d

° : automatically triggered
distributed-memory tests With SLURM Check-perf-impact results: (f7ef1830fe7f830eeed 17b0b5a37c2ef)

A Significant slowdown (> 1.25x) in some microbenchmark results: building command gr:

°® Cove rage: M nodes - 1 > immediate submission to a scheduler thread [/ contracting tree topology
g . # Significant speedup (<0.80x) in some microbenchmark results: building command grap

nodes - 4 > immediate submission to a scheduler thread / contracting tree topology
® Performance regressions

Relative execution time per category: (mean of relative medians)

» command-graph : 1.00x
s graph-nodes : 1.00x
* grid : 1.00x

® Performance Trace Visualization T
Via tra Cy + system : 1.070x

+ task-graph : 1.00x

No Data No Data

® Clang plugin for statically-detectable
errors
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https://github.com/celerity/celerity-runtime/actions/workflows/celerity_ci.yml
https://coveralls.io/github/celerity/celerity-runtime?branch=master

Software Engineering Around Celerity

e Automatic tests

° : automatically triggered
distributed-memory tests with SLURM

® Coverage:

® Performance regressions

® Performance Trace Visualization
via tracy

¢ Clang plugin for statically-detectable
errors
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Software Engineering Around Celerity

e Automatic tests

° : automatically triggered
distributed-memory tests with SLURM

® Coverage:

® Performance regressions

® Performance Trace Visualization
via tracy

® Clang plugin for statically-detectable
errors
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Data Tracking

® |n order to generate the command graph, Celerity needs to track which
command last updated which location(s) for each buffer

e More specifically, will have updated at the point of time currently being generated,
as command generation runs significantly ahead of execution

(Simplified) example of tracking information over time for a 2D stencil on 2 nodes:

Compute0 Compute 1

(self) (self) (self)

Node 0 Init \\ .

Compute 0 \ Pl Received Compute 1

(other) \\ ,’ (other) (other)
4 C 0 N (other) = c 1

te ompute

Kernel ompy 7 N Kernel
(other) P LY Received 1 (other)

Compute 1
(self)

Init
Mo | Compute0 4 Compute0
(self) (self)

After initialization After 1t compute step After transfers for After 2" compute step
2"d compute step
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Generative Access Patterns
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Room Response Simulator Access Pattern

e Example of a 2D generative access pattern
® 1 new row of a 2D buffer is written every time step
e All previous rows are read

- What does this mean for data tracking?

t1 t2 t5

0 ute j
Node 0 -

0 ute
Node 1 -
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Impact on Command Graph Generation

Compute 0

Compute 0 Compute 0

..onnode0
..onnode 1

... push command

Received 1

‘X223 1|

.. receive command
.. command dependency
_.~~"...inter-node dependency
Received 1 (implicit)

Compute 1 |Received 2 Compute 1
Compute 2 Compute 2

I i

1
Received 1
Received 2

, o Received2
Compute 4 Compute 4

— Computational effort of dependency tracking and generation grows
with algorithm iterations!
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Command Horizons
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Horizons Overview

® Goal: solve the generative access patterns tracking issue
e Asynchronously, and without additional communication

e With a configurable tradeoff between tracking fidelity and overhead

® 3 important concepts:

1. Decision Making — when to create a new Horizon

2. Horizon Generation— what happens to the command graph when a Horizon is created

3. Horizon Application — effect on tracking data structures when a Horizon is applied
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Decision Making

e Simple Approach:

e Track the critical path length while
generating the task graph

e Computationallyvery inexpensive

e Every time a multiple of S is reached for
the first time, generate a Horizon task

e We call S the Horizon Step Size
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Horizon Generation and Application

Horizon 0 gene(ated:
-> Dependencies from current

HO generated W
command front SRR s o T O i Iy = >

(traCked during graph gen) Horizon 0 | Received 1 f Received 1
Horizon 0 applied: H1 generatel /" _ <X _ e <
. . HO applied )
o Application of Hor. N-1 when F
Hor.Nis generated Received 2 ) Received 2
- Subsumes all older (id < Hor.) e

entries in tracking data structure Wi'applied "—"'—" — LT =

- Subsequent dependencies will l
y Received 3 | Received 3
IEW

be redirected to Horizon
H3 generatey = v \_~ Horizon 3

Compute 4 Compute 4

................................................. » Received 4 )| Received 4

H3 applied

Example:
RSIM pattern
S=1
Simplified
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Performance Evaluation
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Microbenchmarks — 2D Generative Access

32,00
......... 1 2 4 16 ——none

16,00
8,00
4,00
2,00
1,00

Per-iteration time (ms)

0,50

cete
........
............................................................
...................................................................................................................................................

0,25

0,13
1 17 33 49 65 81 97 113 129 145 161 177 193 209 225 241

512 GPUs lteration number
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1D

4,000
2 2,000
1,000

0,500

Per-iteration time (|

0,250

0,125

1000,0

—

800,0
600,0

run time (ms

= 400,0

Total dr

200,0

0,0

1

Additional Microbenchmarks

......... 1 2 4 A32'000
e | 6 none @ 16,000
= 8,000
E 4,000
S 2,000
7 ® 1,000
A M,v,!,n,ﬂ.u.u,4,u,~ AV LA VYRV RV VYAV VYUY VVYY Y VYTV VYT VS %, 0,500
.............................................................................................. 5 0250
0,125
17 33 49 65 81 97 113 129 145 161 177 193 209 225 241 1 17 33 49 65 81 97 113129145161177193209 225241
Iteration number 3D Iteration number
1D microbenchmark, 256 time steps, 512 GPUs _ 3D microbenchmark, 256 time steps, 512 GPUs

20 g 4000,0 : 20 2

---+--- Total dry-run time (ms) * @ _ --+--- Total dry-run time (ms) . Fl

| --a-- Total horizon time (ms) 15 ¢ £ 3000,0 --4-- Total horizon time (ms) 15 =

P A 'I/ % g . A\ '/ %

10 5 S 2000,0 e T 4 10 £

‘.~'§ _ ," ,//\\ 2 'g A ................. ’ ,1'}’\ g

~~~~~ A--- A SN 5 S = 1000,0 A A A 5 R

‘— __________ ‘ \, _8 |2 -’/l .\ _g

" -------- "' ------------- AR I B R I L L \ =

& 0 3 0,0 @-oooooeoe s L & & 0 g

1 2 4 ) 16 none 1 2 4 16 none
Horizon Step Size Horizon Step Size
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Overhead on Non-generative Applications

WaveSim, 1000 time steps / 512 GPUs Nbody, 250 time steps / 512 GPUs
65,0 0,60 350,0 30,0
---+--- Total dry-run time (ms) . .
2 2 @ 2 »
E 60,0 —A\— --a-- Total horizon time (ms) [ 0,50 % £ 3300 A g
(«B] \ . - ()
E \ 040 E = Y <+ 200 £
= 550 * PG G—— o = = 310,0 — * =
:.“, \.\ --- - A 4 0'30 g > '\’ 15,0 8
£ 50,0 020 S 2 290,0 -+ Total dry-runtime (ms) | 100 5
E 450 ."‘\. 3 T‘é’ 270.0 .‘-\ --4-- Total horizon time (ms) ' §
, ~a 0,10 = — ) \ - 50
40,0 A A— 0,00 250,0 Y - A= A A 0,0
1 2 4 16 none 1 2 4 16 none

® Horizon overhead is negligible
e Recall that this is entirely asynchronous to actual computation!
e S =1 for Nbody, a degenerate case

® Horizons actually have a minor positive impact even for non-generative apps
* Related to data structure cleanup
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Total Simulation Time (s)

Real-World RSIM Evaluation

256
_____________ 4
128 L >
- - P
64 N = o
32 N S
16 ke
- - Horizon Step Size 2 " S
g |  ArPoreonStepSizez o A _—
--#- No Horizons
4
GPUs: 1 2 4 8 16 32
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Horizons Summary

® Advantages:
¢ Independent of the specifics of the data access pattern
e Caps the per-node dependencies which need to be tracked
e High-fidelity dependency information is maintained locally

e Generationis efficient—required information can be tracked with a small fixed
overhead during command generation

e Applicationis efficient— due to the numbering scheme of commands no graph traversal
is required

* No additional communicationis required

e Potential downside:

* [ndependent commands might be sequentialized > No impact in practice with S = 2
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General Performance/Scalability: WaveSim

WaveSim
. : :
~— 2D wave equation over time
\&m\ﬂfw ® 5-point stencil
e
o /N:py X 2.45 - 10* side length
® 93% efficiency on 128 GPUs
= e 1Dx1
—3— 1Dxd
B e Marconi-100, weak scaling,
e median of 10 runs + warmup

GPUs
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Ongoing Work and Future Ideas

improve performance
® l|everaging collective communication (without any API changes/additions)

e dynamic load distribution
extend tools and tool support
auto-generate (some) range mappers
¢ involves compiler work (again), though much simpler than AllScale

provide high-level wrappers and (skeleton) libraries to lift the user
requirement of mastering modern C++

® Python (numpy), Julia, Matlab, etc.
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Open Issues and Problems

® Most users really don’t want to write C++

e AllScale paper review (paraphrased):
“Id rather match my send and receive calls in C than write complicated C++”

e Based on SYCL, which can’t compete with CUDA (yet)

e Academic project, dependent on funding and recruitment options
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Thank you for your attention! Questions?
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