MPIWasm: Executing WebAssembly on HPC Systems T

APART Workshop February 2024

Mohak Chadha: mohak.chadha@tum.de

Chair of Computer Architecture and Parallel Systems (CAPS)

Technical University of Munich

Germany

Mohak Chadha | MPIWasm: Executing WebAssembly on HPC Systems | Apart Workshop@2024

mailto:mohak.chadha@tum.de

Table of Contents

Motivation

What is WebAssembly?
MPIWasm
Evaluation

Future Directions

Mohak Chadha | MPIWasm: Executing WebAssembly on HPC Systems | Apart Workshop@2024

Rise of Containers in HPC

, |
000 [SC7] ‘ s [PloS one’17] [1ISC'19]
Charliecloud \&/ SARUS

S S
‘h . Phys.A7] Gef{58) [Redhat, ISC'19]

podman docker

Mohak Chadha | MPIWasm: Executing WebAssembly on HPC Systems | Apart Workshop@2024

What are containers? (Recap)

Container Container
= Using Linux primitives.
= Share Linux Kernel. e ™
= Fast Starts, minimal overheads. [cgroups] [namespaces] []

Flexible Isolation.

N

Linux Kernel

/

intel

Hardware

arm

Mohak Chadha | MPIWasm: Executing WebAssembly on HPC Systems | Apart Workshop@2024

Why containers in HPC?

Enabling custom user-defined software stacks

Mohak Chadha | MPIWasm: Executing WebAssembly on HPC Systems | Apart Workshop@2024

Challenges in Container-based HPC application Development

HPC System

docker docker

SuperMUC-NG

®

Root privileges for running containers

Only, 8% of the total jobs at

NERSC use containers [2018]

NOTE: Unsupported file systems in rootless mode

The Overlay file system (OverlayFS) is not supported with kernels prior to 5.12.9 in
rootless mode. The fuse-overlayfs package is a tool that provides the functionality of
OverlayFS in user namespace that allows mounting file systems in rootless environ-
ments. It is recommended to install the fuse-overlayfs package. In rootless mode,
Podman will automatically use the fuse-overlayfs program as the mount_program if in-
stalled, as long as the $HOME/.config/containers/storage.conf file was not previously
created. If storage.conf exists in the homedir, add mount_program =
"/usr/bin/fuse-overlayfs" under [storage.options.overlay] to enable this
feature.

The Network File System (NFS) and other distributed file systems (for example: Lustre,
Spectrum Scale, the General Parallel File System (GPFS)) are not supported when run-
ning in rootless mode as these file systems do not understand user namespace.
However, rootless Podman can make use of an NFS Homedir by modifying the

$HOME/ . config/containers/storage. conf to have the graphroot option point to a
directory stored on local (Non NFS) storage.

Mohak Chadha | MPIWasm: Executing WebAssembly on HPC Systems | Apart Workshop@2024

T

Challenges in Container-based HPC application Development

Laptop or Workstation
F_-_—_—————— I |
: Build g,,'—>: Test
1 ul I es
Lo Goer L oocke

HPC System

T

@ Increasing heterogeneity of HPC nodes

intel drm

Mohak Chadha | MPIWasm: Executing WebAssembly on HPC Systems | Apart Workshop@2024

T

Challenges in Container-based HPC application Development

Mostly x86_64

\ HPC System
N

Laptop or Workstation @ Increasing heterogeneity of HPC nodes

SR T - intel. arm

' Buildghy [Test by >

docker |

__7--- ---{"' SuperMUC-NG

Build for aarch64 Uninformative

Mohak Chadha | MPIWasm: Executing WebAssembly on HPC Systems | Apart Workshop@2024

Challenges in Container-based HPC application Development

Laptop or Workstation
F_-_—_—————— I |
| I |
[Build * e Test

docker |

a

@ Frequent network transfers of container images

HPC System

intel drm

SuperMUC-NG

g »/A'T.»,_

Mohak Chadha | MPIWasm: Executing WebAssembly on HPC Systems | Apart Workshop@2024

T

Challenges in Container-based HPC application Development

Laptop or Workstation
F_-_—_—————— I |
| I |
[Build * e Test
Lo Goer L oocke

HPC System

Requirement for special networking
libraries or compilers

intel drm

SuperMUC-NG

g »/A'T.»,_

Mohak Chadha | MPIWasm: Executing WebAssembly on HPC Systems | Apart Workshop@2024

Challenges in Container-based HPC application Development

Laptop or Workstation
F_-_—_—————— I |
: Build g,,'—>: Test
1 ul I es
Lo Goder L oocke

Building high-performant application
container images.

HPC System

intel drm

SuperMUC-NG

g »/A'T.»,_

Mohak Chadha | MPIWasm: Executing WebAssembly on HPC Systems | Apart Workshop@2024

T

Alternative to containers?

»

;% Solomon Hykes / @shykes@hachyderm.io
o

If WASM+WASI existed in 2008, we wouldn't have needed to created
Docker. That's how important it is. Webassembly on the server is the

future of computing. A standardized system interface was the missing
link. Let's hope WASI is up to the task!

69 Lin Clark @ G

WebAssembly running outside the web has a huge future. And that future gets
one giant leap closer today with...

@ Announcing WASI: A system interface for running WebAssembly outside
the web (and inside it too)

hacks.mozilla.org/2019/03/standa...

I e
IS M 1read

Mohak Chadha | MPIWasm: Executing WebAssembly on HPC Systems | Apart Workshop@2024

Introduction: WebAssembly (Wasm)

Ho Binary format, with alternative human-readable text representation

EQ Virtual ISA

EQ Linear 32-bit memory space

Ho Lightweight userspace isolation mechanism WEBASSEMBLY

E®Q Import/export system for granting capabilities

Mohak Chadha | MPIWasm: Executing WebAssembly on HPC Systems | Apart Workshop@2024

Introduction: WASI: Wasm System Interface

EQ Standardized non-Web system-oriented API for Wasm
EQ Capability-oriented

EQ Portable

EQ Custom libc implementation integrated into WASI-SDK

WASI Implementations

Mohak Chadha | MPIWasm: Executing WebAssembly on HPC Systems | Apart Workshop@2024

WebAssembly Embedders

BYTECODE

wamime - S WAVM

ALLIANCE

“] Wasmer

WasmEdgeRuntime Wasm-micro-runtime (WAMR)

intel.

Mohak Chadha | MPIWasm: Executing WebAssembly on HPC Systems | Apart Workshop@2024

What we did?

@ wmPIwasm WASM Embedder

1

x86_64

Tool to simply and automate the
compilation process e —————

Mohak Chadha | MPIWasm: Executing WebAssembly on HPC Systems | Apart Workshop@2024

Compiling MPI applications to Wasm

(D) Extend the WASI-SDK

typedef int MPI_Comm;
typedef int MPI_Datatype;

int MPL_Init(int* argc, char*** argv);
int MP1_Finalize(void);
int MP1_Send(
const void* buf, int count, MPI_Datatype datatype,
int dest, int tag, MPI_Comm comm
);
int MPl_Recv(
void™ buf, int count, MPI_Datatype datatype,
int source, int tag, MPI_Comm comm, MPI_Status™* status

);

Clang

—

(import "env" "MPI_Init" (func SMPI_Init (param i32 i32) (result i32)))
(import "env" "MPI_Finalize" (func SMPI_Finalize (result i32)))
(import "env" "MPI_Send" (

func SMPI_Send (param i32i32i32i32i32 i32) (result i32)
)
(import "env" "MPI_Recv" (

func SMPI_Recv (param i32i32i32i32i32i32 i32) (result i32)

)

N\
/ \ M Wasm Module

@ Custom python-based tool. %

>

i

MVAPICH

OPEN MPI

Mohak Chadha | MPIWasm: Executing WebAssembly on HPC Systems | Apart Workshop@2024

MPIWasm

Extends Wasmer.

Support for C/C++ applications conforming to MPI-2.2 standard.

Support for both x86_64 and aarch64 processors.

i‘il Wasmer

High performance execution of MPI-based Wasm modules.

Low-overhead for MPI calls through zero-copy memory operations.

Support for high-performance network interconnects.

Mohak Chadha | MPIWasm: Executing WebAssembly on HPC Systems | Apart Workshop@2024

Executing Wasm Code with High-Performance

- o Source Source
AoT Compilation é
o)
O
LLVM IR LLVM IR
Caching mechanism for generated machine code.
x86 ISA WASM ISA
S tree ./cache o LLVM IR
.Jcache %
de5afe5d4f24cf986elfelc3e614304a4d860f14d6794e0e99a97ff38887cafe e}
€025e7872b4c6b4d852cfc475472f7ab2bc7f67654a31597a0e1076978f939d1 UEJ X86 ISA
0 directories, 2 files
S file cache/de5afe5d4f24cf986e1felc3e614304a4d860f14d6794e0e99a97... Native (left) vs. WASM (right) code generation flow
ELF 64-bit LSB shared object, x86-64, version 1 (SYSV), dynamically linked, not strippegh | \/M-based compiler and MPIWasm.

Mohak Chadha | MPIWasm: Executing WebAssembly on HPC Systems | Apart Workshop@2024

Memory Address Translation

WASM to host memory address conversion with base offset of linear memory address space

Wasm module’s linear address space
MPIWasm /

0x0 OXFFFF_FFFF

Instantiated Wasm module

A A T A

0x Base Address | 0X2000_0000_0000 |0x2000_FFFF_FFFF O0x7FFF_FFFF_FFFF

MPIWasm'’s address space pub struct WasmPtr<T, M: MemorySize = Memory32>

Mohak Chadha | MPIWasm: Executing WebAssembly on HPC Systems | Apart Workshop@2024

Implementing MP| Functions

Instantiated Wasm module 0x1_0000 MPI_SUCCESS
A
Y
MPIWasm MPI_Init MPI_Recv MPI_Send MPI_Reduce MPI_Finalize
A
a2
0x2000_0001_0000 MPI_SUCCESS
rsmpi for bindings
A ¥
OpenMPI MPI_Init MPI_Recv MPI_Send MPI_Reduce MPI_Finalize

Mohak Chadha | MPIWasm: Executing WebAssembly on HPC Systems | Apart Workshop@2024

PingPong and SendRecv (x86_64)

PingPong: 0.05x GM average slowdown

SendRecv: 0.06x GM average slowdown

PingPong (time) < 1024 Bytes

Sendrecv 6144 Ranks (time) < 1024 Bytes

g - - - T T T

3 1517 Native |
o H—— WASM]
£ : 1
= i |
g 1 | =
9 5]
© g g
§ L | | | | |
= 20 22 24 26 28 210

Bytes

B
I

—— Native
|| —— WASM

N
TTT

Iteration Time (usec)

20 22 24 26 28 210]
Bytes
Mohak Chadha | MPIWasm: Executing WebAssembly on HPC Systems | Apart Workshop@2024

Iteration Time (usec)

T

PingPong (time) > 1024 Bytes

102

—_
(en)
—

% —— Native
H —— WASM

212 214 216 218 220 222

Bytes

Sendrecv 6144 Ranks (time) > 1024 Bytes

Iteration Time (usec

10% ‘ - T
| —— Native
7 —— WASM

—
e}
[68)

—
e}
N

—_
e}
p—

212 214 216 218 220

Bytes

222

PingPong and SendRecv (aarch64)

PingPong (time) < 1024 Bytes

PingPong: 1.01x GM average speedup

SendRecv: 0.07x GM average slowdown

—_

H —— Native
|| —— WASM

Iteration Time (usec)

o o
AN @

<
=~

20

22

24

26

28

210

Sendrecv 32 Ranks (time) < 1024 Bytes

Iteration Time (usec)
—_ =
€]]

<
o

Bytes

- —— Native]

| —— WASM

) 20 22 24 26 28 2107
Bytes

Iteration Time (usec)

Mohak Chadha | MPIWasm: Executing WebAssembly on HPC Systems | Apart Workshop@2024

T

PingPong (time) > 1024 Bytes

—_
(@)
[=]

Sendrecv 32 Ranks (time) > 1024 Bytes

| —— Native

| —— WASM -

o

G.)

n

2

v 10% |
g
> 1

£ v

:

[

=~

[

fus

212 514 9716 918 220 22

Bytes

103

[Native
7 —— WASM

10 |
10' |

1001

212 214 216 218 220 222

Bytes

HPCG

HPCG GFLOPS HPCG GFLOPS

e T T T T T T

20 U= Native i 80 || Native |
H —— WASM 1w —— WASM
L |£ @ f
g’c Similar performance upto 192 MPI S " i 1% 4| |
rocesses = g 15
P © 1 12 20} 1
0 E— | | | [0 L I — | i |]
24 8 16 32 48 16 48 96 144
Ranks Ranks
aarch64 x86_64
HPCG GFLOPS
: : [[[
4’000 | [—— Native I b 140/0
" —«— WASM
=
gc Translation overhead adds up for higher number O 2,000 - 2
of processes 5
0 L | | | | | B
192 768 1,536 3,072 6,144
Ranks
x86 64

Mohak Chadha | MPIWasm: Executing WebAssembly on HPC Systems | Apart Workshop@2024

Into the Future: Wasm and HPC

1.36x better throughput 1 500

Wasm Extended SIMD

9]
~
[aa)
=

1,000

500

DT Total Throughput
0o Native -
| |I0WASM w/o SIMD

o [WASM w SIMD

=0 UD L

bh wh sh
Topology

Mohak Chadha | MPIWasm: Executing WebAssembly on HPC Systems | Apart Workshop@2024

More Detalils

Exploring the Use of WebAssembly in HPC

Mohak Chadha, Nils Krueger, Jophin John,
Anshul Jindal, Michael Gerndt
Chair of Computer Architecture and Parallel Systems,
Technische Universitidt Miinchen, Germany

Abstract

Containerization approaches based on namespaces offered
by the Linux kernel have seen an increasing popularity in the
HPC community both as a means to isolate applications and
as a format to package and distribute them. However, their
adoption and usage in HPC systems faces several challenges.
These include difficulties in unprivileged running and build-

Mohak Chadha | MPIWasm: Executing WebAssembly on HPC Systems | Apart Workshop@2024

Shajulin Benedict
Department of Computer Science and Engg., Indian
Institute of Information Technology Kottayam, Kerala

ACM Reference Format:

Mohak Chadha, Nils Krueger, Jophin John, Anshul Jindal, Michael
Gerndt and Shajulin Benedict. 2023. Exploring the Use of We-
bAssembly in HPC. In The 28th ACM SIGPLAN Annual Symposium
on Principles and Practice of Parallel Programming (PPoPP °23),
February 25-March 1, 2023, Montreal, QC, Canada. ACM, New
York, NY, USA, 15 pages. https://doi.org/10.1145/3572848.3577436

Scan Me

Conclusion

WASM ecosystem has the potential to provide competitive
performance in the HPC domain.

WASM enables the scientific community to benefit from:

CPU Architecture and OS portability

Capabilities-based security model

Mohak Chadha | MPIWasm: Executing WebAssembly on HPC Systems | Apart Workshop@2024

Questions? Q&A

Key Takeaways:

0 Wasm and HPC is an exciting
research direction.

O MPIWasm delivers competive
native application

performance. Thank you for your attention!

Q Support fo x86_64 and
aarch64 architectures.

Find Us: MPIWasm:

Q Support for applications
written with the MPI-2.2
standard.

Q Support for OpenMPI and
MVAPICH.

Mohak Chadha | MPIWasm: Executing WebAssembly on HPC Systems | Apart Workshop@2024

