

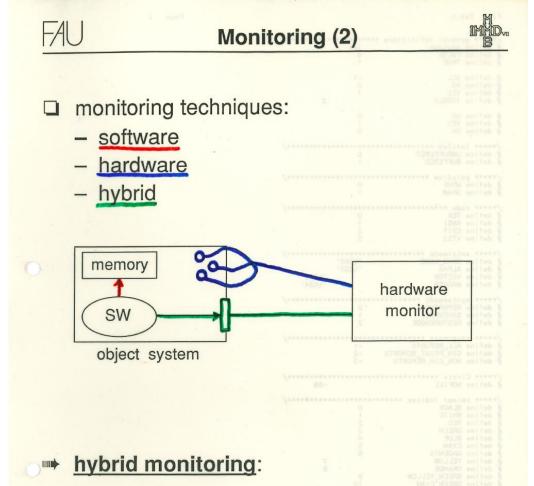
37 YEARS OF PERFORMANCE TOOLS DEVELOPMENT: SUCCESS STORIES AND FAILURES

12 FEB 2024 I BERND MOHR

Member of the Helmholtz Association

THE EARLY YEARS

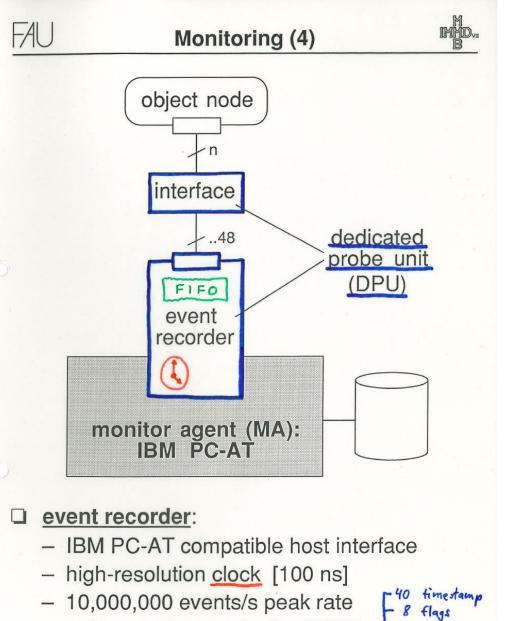
1987 TO 1992 / FRIEDRICH ALEXANDER UNIVERSITÄT ERLANGEN-NÜRNBERG


Member of the Helmholtz Association

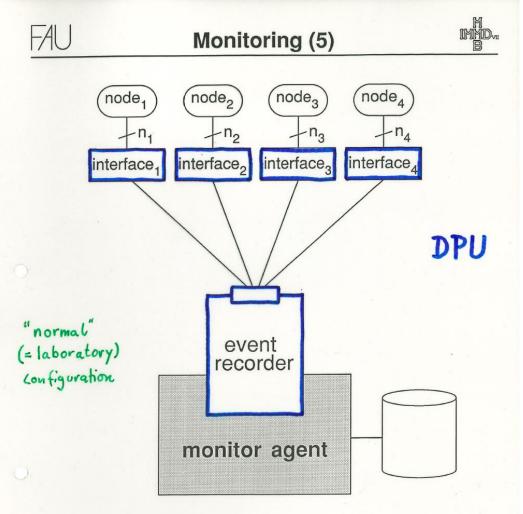
CONTEXT

• Der SFB 182

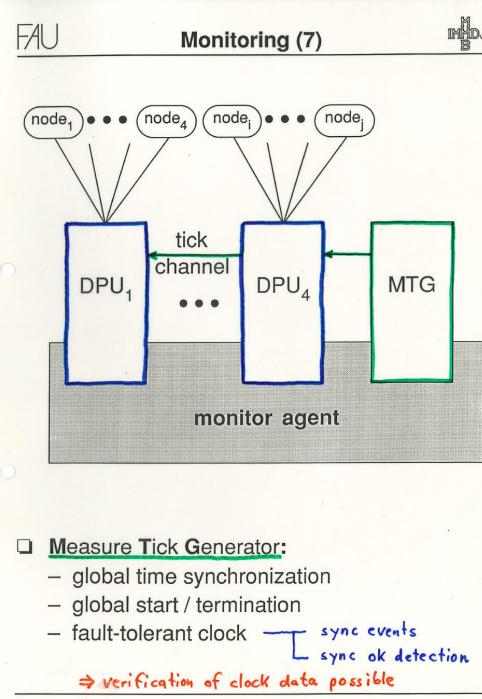
- "Multiprozessor- und Netzwerkkonfigurationen"
- Four 3-year phases (1987 1998)
- Work Package C1
 - "Messung, Modellierung und Bewertung von Multiprozessoren und Rechnernetzen"
- Parallel system development @ FAU IMMD
 - EGPA (Erlangen General Purpose Array)
 - DIRMU (Distributed Reconfigurable Multiprocesser kit)
 - MEMSY (Modular Expandable Multiprocessor System)

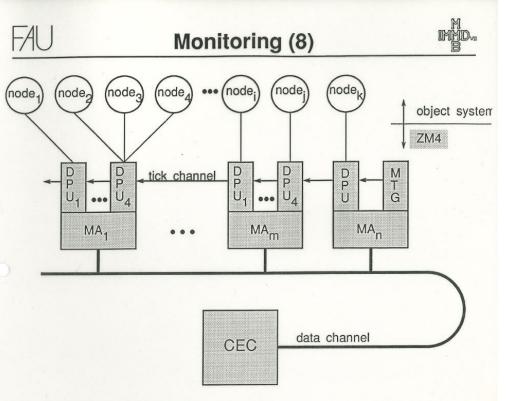


- <u>event definition</u> by inserting monitor instructions into the software (instrumentation)
- event recording and timestamping with hardware


Event Recorder Board

- 32K x 96 bit event buffer (FIFO) 48 event data
- 10,000 events/s mean rate (per MA)




event recorder:

- 4 independent event streams
 - $n_1 + n_2 + n_3 + n_4 \le 48$ bits

Page 5

U-7

- Central Evaluation Computer
 - central control
 - gathers traces via data channel
 - central (off-line) evaluation

distributed monitor system ZM4:

- adaptable to arbitrary computer systems

Bernd Mohr

Bernd Mohr

V-10

FAU

Applications

M IMMD~ B

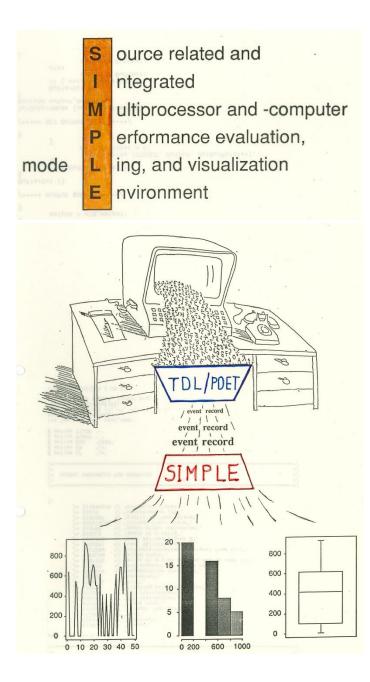
•			
object system / operating system	monitor / interface	application	
DIRMU / DIRMOS	logic analyzer ZM4 / parallel port	numerical application simulation program	
Transputer	ZM4 / link adapter ZM4 / bus adapter	communication system TRACOS	IBM Zurich Research Lab
SUPRENUM / PEACE	ZM4 / 7 segment display	ray tracing	
IBM-PC / OS/2, MSDOS	ZM4 / Centronics	protocol software B-ISDN, FDDI	IBM ENC Heidelberg
IBM-PC / XENIX	ZM4 / Centronics	protocol software	Siemens Erlangen
SUN4 / SunOS	ZM4 / VME bus	X-Windows	0
SIEMENS robot control	ZM4 / SMP bus	robot control software	Siemens Munich
CCC3280 / XELOS	software monitor	multiprocessor UNIX	
IBM-PC network	ZM4 / Centronics	Electrical Load Supervision Control System	Fudan Univ. Shanghai
Bernd Mohr	ST	C–22	C C

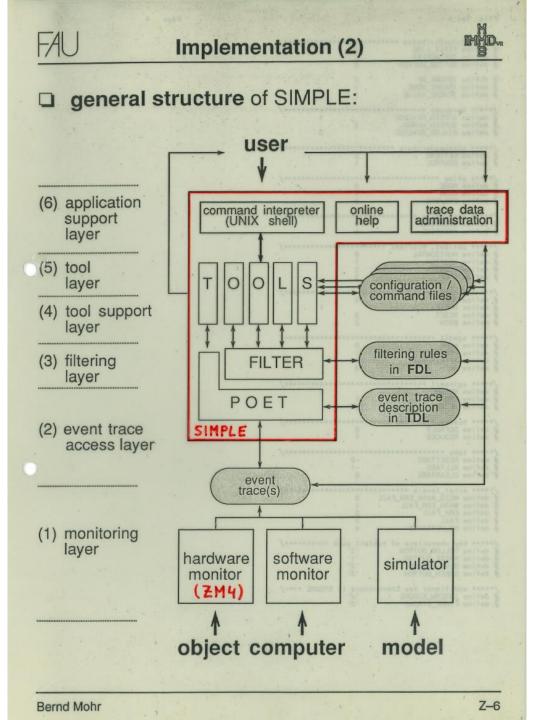
	Mo	Hisz	ati	on	(1)
4	NO		aur		(4)

problems	with	monitoring	non-sequentia	al
systems:				

- distributed system ↔ central monitor
- global time (virtual, real)
- non-reproducible behavior
- "Probe Effect"

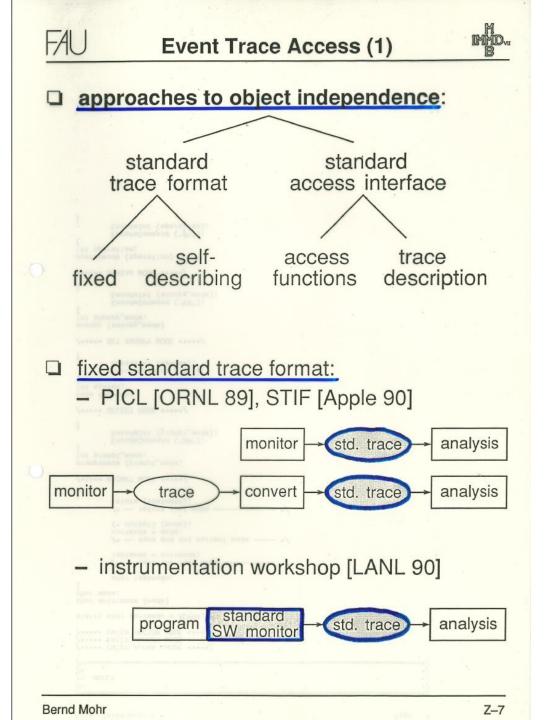
FAU

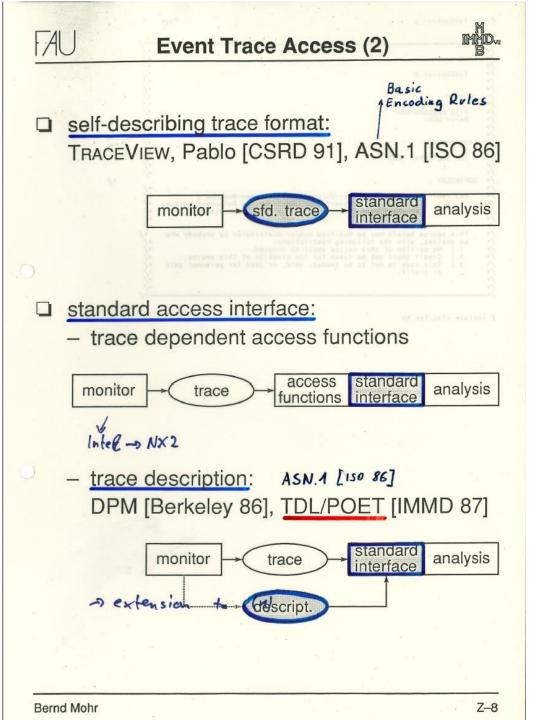

- other problem: many different objects
 - structure / configurations
 - operating systems
 - programming models
 - applications
- but: almost the <u>same</u> tasks

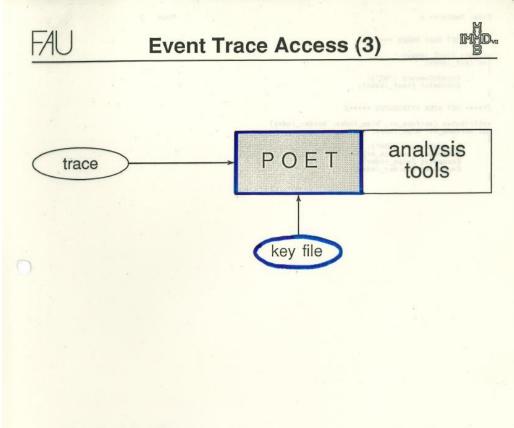

requirement:

object independent

Trace Monitoring and Analysis System

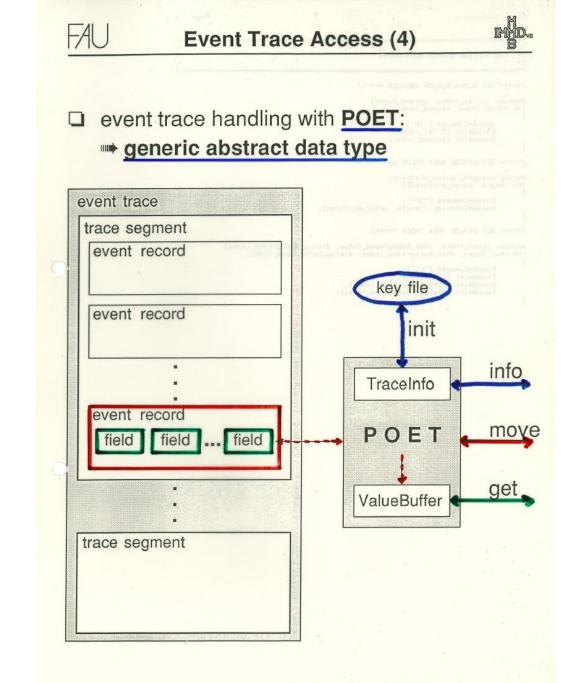

Bernd Mohr



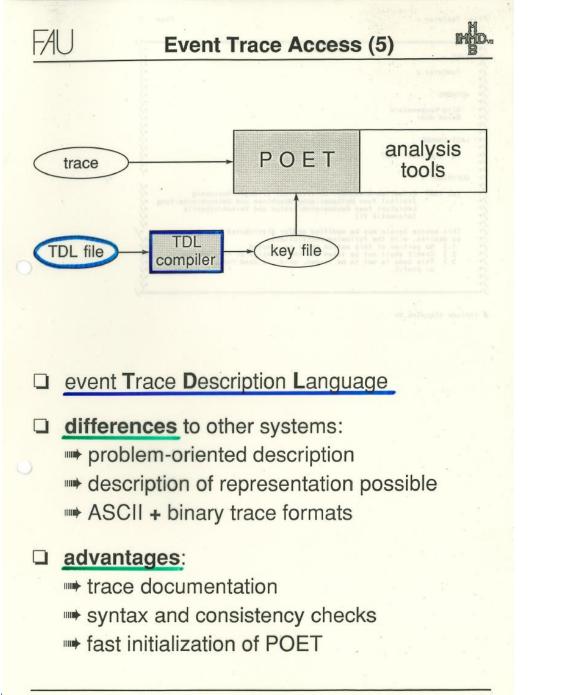


Member of the Helmholtz Association

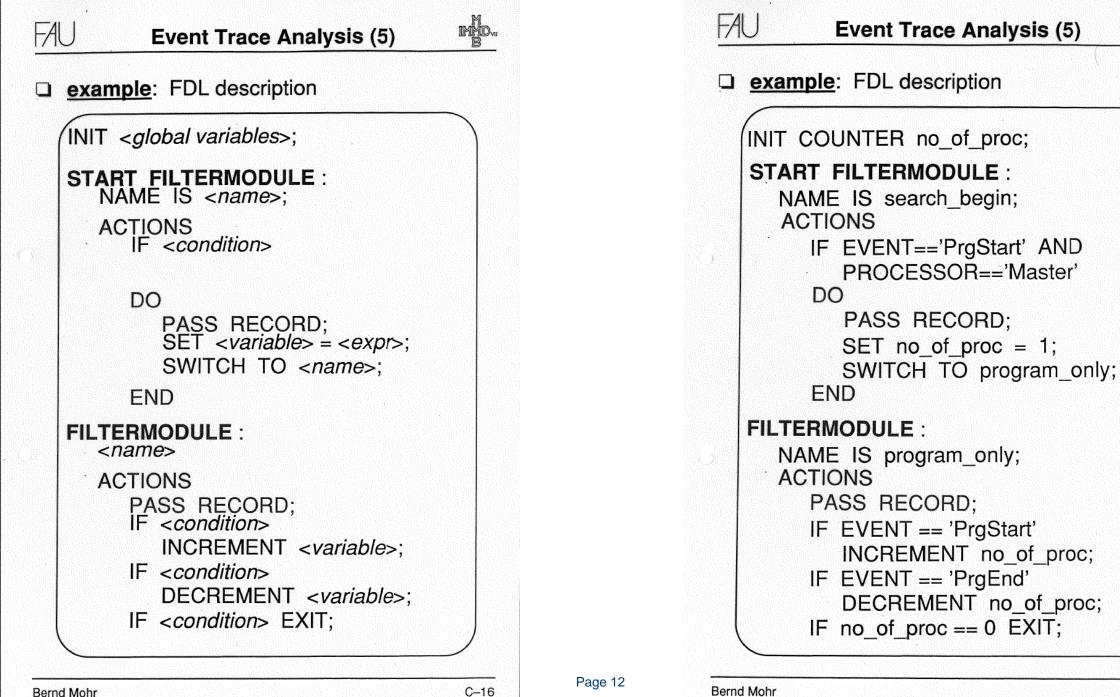
12-Dec-2023



Problem Oriented Event Trace interface


advantages:

- independent of event trace formats
 standardized trace access interface
 reusable function library in C
- problem-oriented access



Bernd Mohr

Z-9

FAU	Event Trace Access (6)	IMMD _w B
event re	cord	
event	timestamp parameter	
TRACE DESC	CRIPTION: S UNSEGMENTED;	
	ESENTATION: DRDER IS 3-2-1-0;	
TOKEN:	ORD: NAME IS <u>EVENT;</u> LENGTH IS 1 BYTE;	
	VALUES ARE [#04, #0E, #0A, #16, #1E, INTERPRETATION #04 = 'IterationStart', #0E = 'SynchronizationStart', #16 = 'InterpolationStart',	1) terting
TIME:	NAME IS <u>ACQUISITION;</u> FORMAT IS (UNSIGNED * 4, 100 ns); MODE IS POINT;	
CASE EVE 'IterationSto <u>DATA</u> :		
END		
ernd Mohr		Z–13

immo.

FAU

Event Trace Analysis (6)

trace validation:

- test whether measurement OK
- confirm expected behavior
- find unexpected behavior

tool CHECKTRACE

for standard tests

tool VARUS

- VAlidation RUles checking System
- allows user specified and problem-oriented assertions:

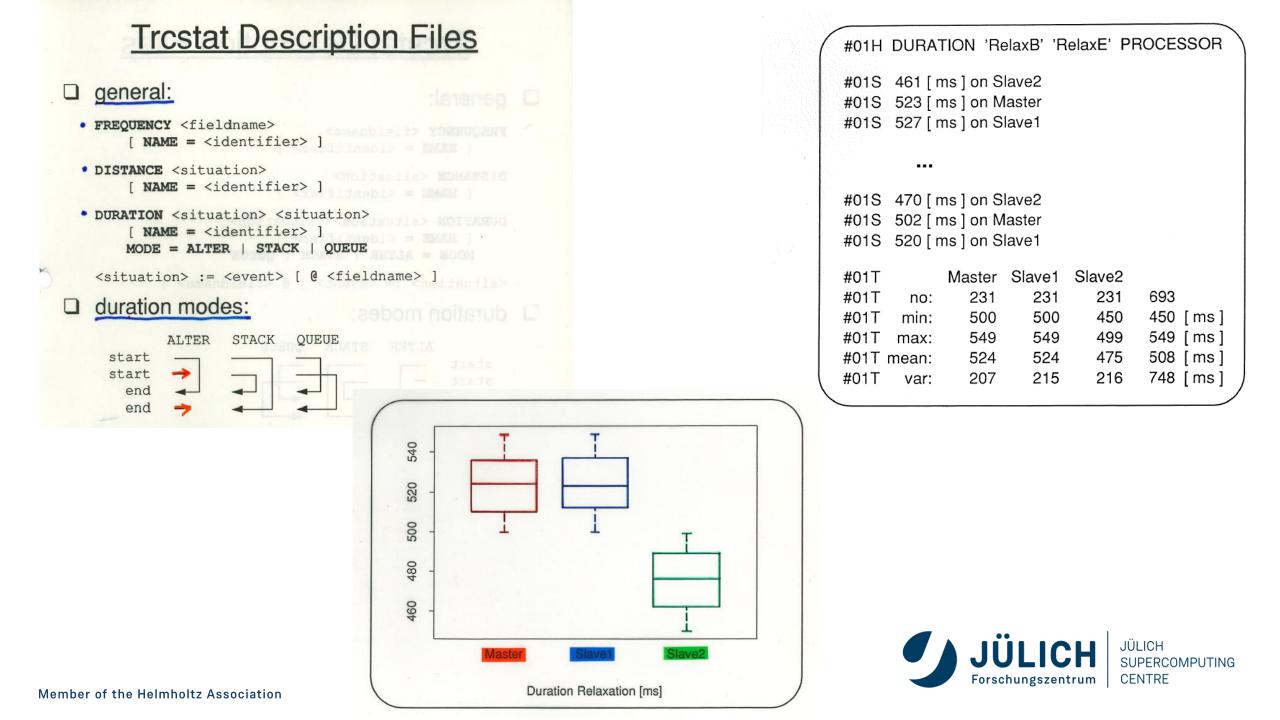
ASSERT

NUMBER (EVENT=='IterationStart') == NUMBER (EVENT=='IterationEnd') ELSE "Iteration counting error" ;

ASSERT

IterationNumber INCREASING BY 1 ELSE "IterationNumber sequence error";

ST


example: trace statistics

FAU

- ➡ command language ⇔ tool features FREQUENCY <field name> DISTANCE <expr>
- identifiers, values FREQUENCY EVENT DISTANCE EVENT == 'receive' AND NODE == 'server'
- for application-dependent features:
 - medefined standard names
 - EVENT
 - ACQUISITION
 - NODE
 - PROCESS
 - m predefined standard event types
 - send / receive

- ...

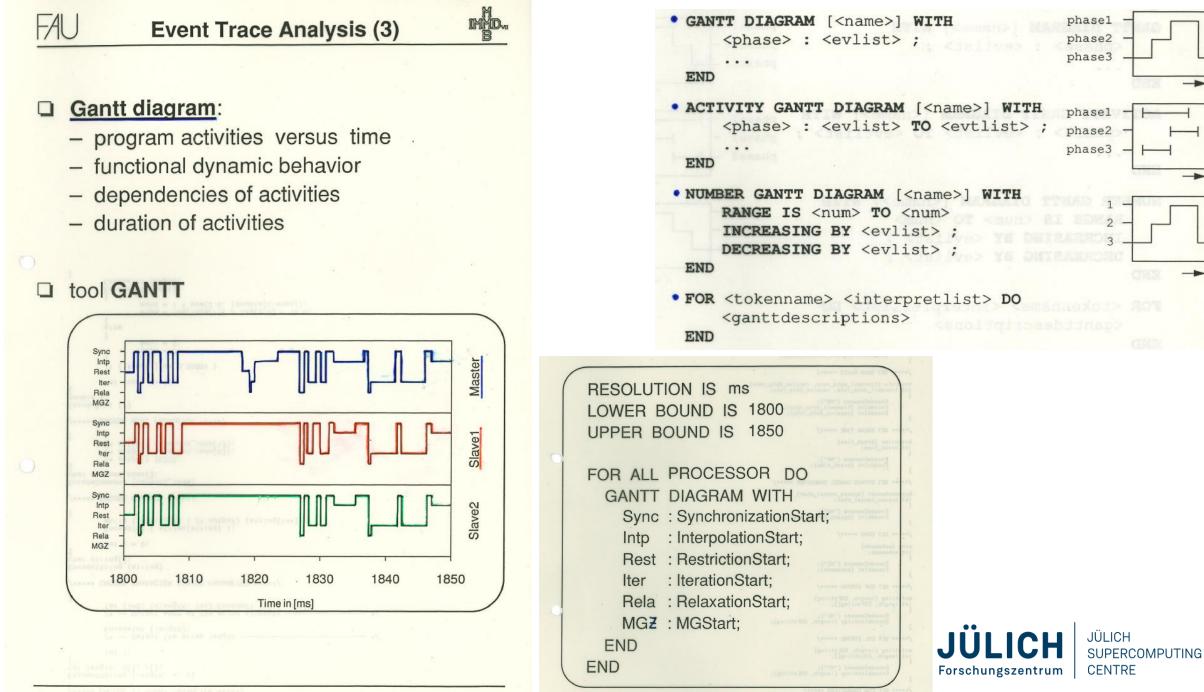
C-17

FAU

Event Trace Analysis (8)

IMMD_{vi} B

activity:

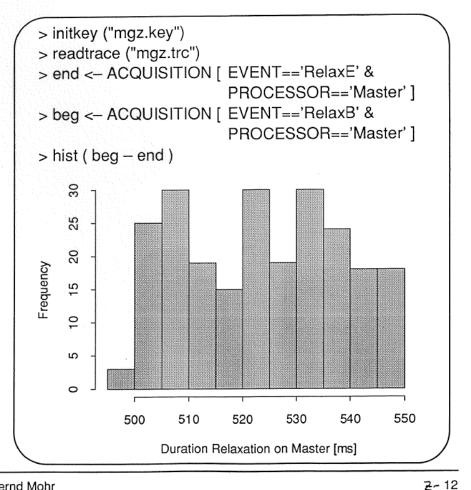

- interval in the dynamic behavior
- defined by sequences of events
- □ inspired by EDL [Bates]

tool FACT

- Find ACT tivities
- allows user-specified and problem-oriented activity definitions as regular event expressions

ACTIVITY Iteration	n IS
IterationStart	→ IterationStep *
	→ Sync ?
	→ IterationEnd
END	
N. Theory	
Plue Tellanoceris	
Bernd Mohr	C-

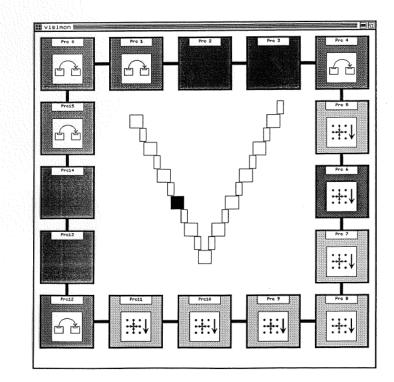
Bernd Mohr


Z-17

example: trace analysis

M IMMD-

- data analysis and graphics package S (AT&T) •
 - high-level programming environment
 - interactive query language
 - S-POET interface



animation tool VISIMON

FAU

- based on X-Windows
- user specified animation description
- program and data animation
- "slow-motion" and "event-by-event" mode

What worked

ASSESSMENT

- Hybrid instrumentation
- Sophisticated and highly advanced hardware monitor (ZM4)
- Fully flexible trace analysis framework (SIMPLE)
 - Generated by different sources (SW tracing, HW monitoring, LANalyzer, log files, simulation outputs,)
 - Of diverse applications (MP Unix, network stack, simulations, robot control software)

• What didn't

- ZM4 too expensive for really large configurations
- SIMPLE unusable by non-expert (highly complex programming required)
- IFF issue: what's wrong? Investigated target? Description?

[~1990 !!!]

THE POSTDOC YEARS

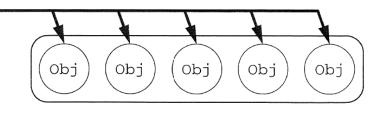
1993 TO 1995 / UNIVERSITY OF OREGON, EUGENE

Member of the Helmholtz Association

CONTEXT

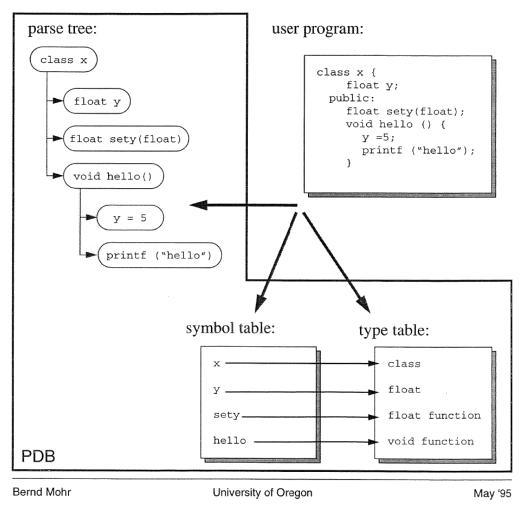
- ARPA funded project "pC++"
 - Programming Environments, Compiler Technology and Runtime Systems for Object-Oriented Parallel Processing
 - Dennis Gannon, Indiana University
 - Postdocs: Pete Beckman, Francois Bodin
 - pC++ compiler and runtime system, Sage++ toolkit
 - Languages, Libraries and Performance Evaluation Tools for Scalable Parallel Systems
 - A. Malony, J. Cuny, University of Oregon
 - Postdoc: Bernd Mohr
 - TAU program analysis tools

pC++ – The Programming Language Ideas

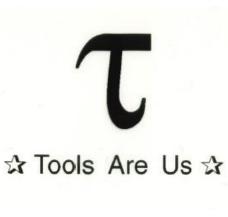

regular C++: programmers apply operators and functions to objects as "messages"

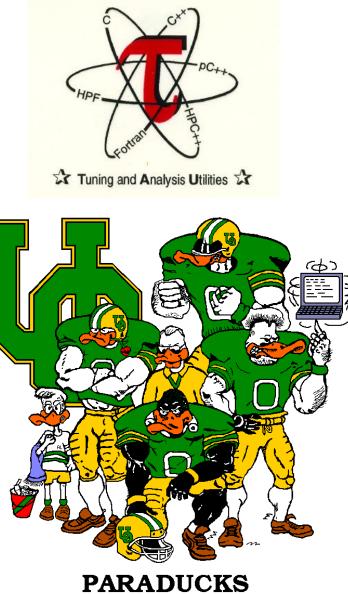
```
class Obj {
    int x;
    void foo();
};
Obj myObj;
myObj.foo();
```

pC++: this concept is extended so that an operator or function can be applied to a large set, grid, array (:= collection) of objects (:= elements) in parallel


```
Collection Vector { ... };
Vector<Obj> paraObj(AlignObj, DistrObj);
paraObj.foo();
```

foo()

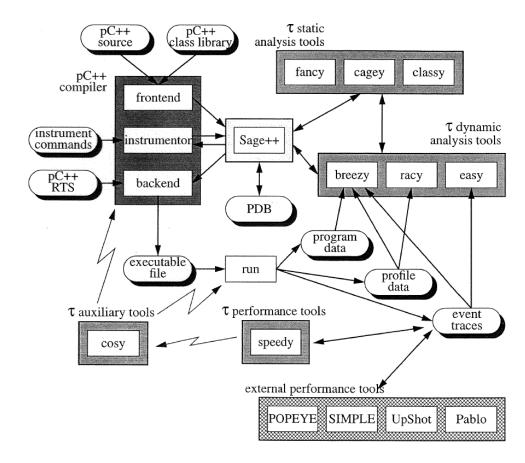

Sage++


- C++ class library for building program analysis and transformation tools
- □ contains parsers for Fortran 77 / 90, ANSI C, and C++
- organized as a class hierarchy for accessing and modifying the parse tree, symbol table, and type table



Bernd Mohr

TAU LOGO EVALUATION



TAU Performance System ®

https://www.cs.uoregon.edu/research/paraducks/

The pC++ Programming Environment

☆ Tools Are Us ☆

- \Box Currently available au tools:
 - O cosy (COmpile manager Status displaY)
 - O fancy (File ANd Class displaY)
 - O cagey (CAll Graph Extended displa Y)
 - O classy (CLASS hierarch Y browser)
 - O racy (*R*outine and data *AC*cess profile displa *Y*)
 - O speedy (Speedup and Parallel Execution Extrapolation Displa Y)
 - O **breezy** (*BR*eakpoint *E*xecutive *E*nvironment for visuali*Z*ation and data displa *Y*)

Prototypes:

Bernd Mohr

- O easy (Event And State displaY)
- O dandy (*D*istributed Array Navigator DisplaY)
- O crafty (ContRol flow And FuncTion displaY)
- O geeky (GEeky Editing and symbol looKup displaY)
- O POPEYE, DAQV (data and performance visualization)
- \Box τ can work with a local or remote pC++ language system
- \Box τ originally designed for C++/pC++ programs

Bernd Mohr

Mar '95

Page 23

University of Oregon

May '95

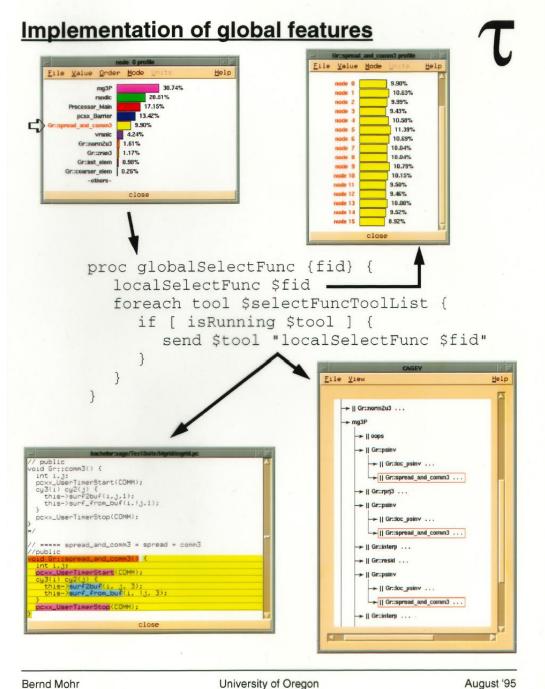
☆ Tools Are Us ☆

- D Providing a user (program-level) view
 - T graphical interface objects represent pC++ language level objects: collections, classes, methods, functions
- Support for high-level, parallel programming languages
 - ightarrow au designed and implemented in concert with pC++ system
 - au translates low-level performance data \Leftrightarrow language level
- □ Integration with compilers and runtime systems
 - ightarrow au integrated with pC++ runtime system
 - \rightarrow **T** uses Sage++ for access to **P**rogram **D**ata **B**ase (PDB)
- D Portability, extensibility, and retargetability
 - \blacksquare T implemented using C/C++ and Tcl/Tk for portability
 - \bullet T implemented as <u>hypertools</u> for extensibility
 - \blacksquare τ uses Sage++ for retargetability
- Usability
 - τ tool objects represent <u>hyperlinks</u>

 - ightarrow au has on-line hypertext help

Hypertools

- tools are distinct tools, but they act in concert as if they were a single, monolithic application
- implemented using hyperlinks and global features


☆ Tools Are Us ☆

Hyperlinks

- T graphical interface objects act like in hypermedia documents
- selecting an object of interest brings up a more detailed or related view of the object
 - e.g., selecting a class in the class hierarchy graph displays a table of class members

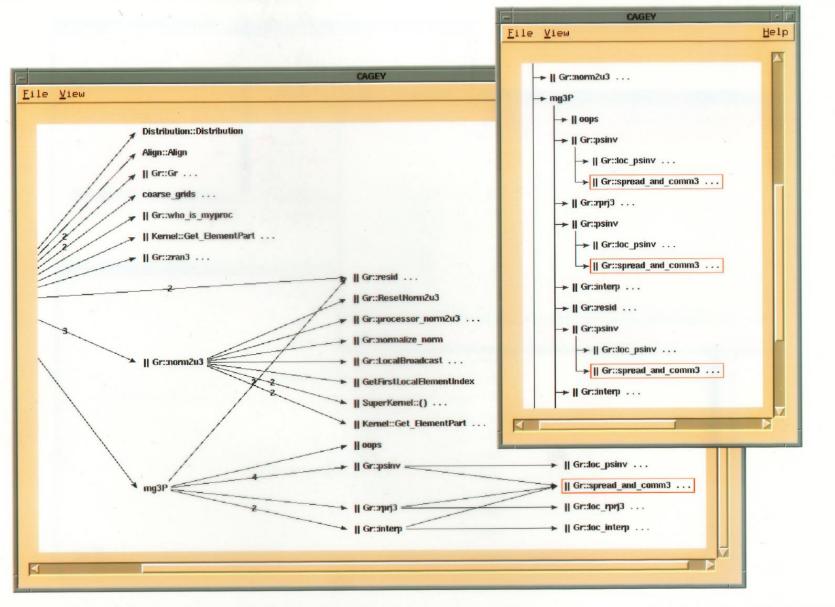
global features

- synchronized hyperlinks: execution of a global feature in one tool automatically updates views in the other tools
- currently implemented:
 - O select-function O load-depfile
 - O select-class O select-callsite

Bernd Mohr

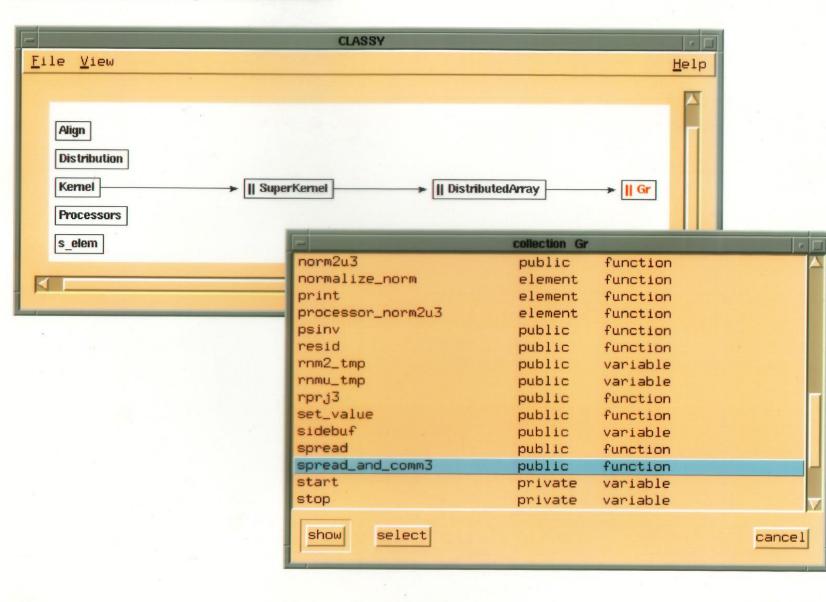
TAU / COSY Main Control Panel / Compile and Execute Manager

-		TAU		
<u>F</u> ile f	ppl	TAU	1.00	Help
host;	bachelor (ptx)		
dir:	sage/TestSuit	e/Mgrid		
	File:	mgrid.de	ep	
	tions defined:	410		
	unctions used: ions profiled:	58		
runet.	ions profiled:			
main (int i)	inti	main H⇒foo	Foo	
Ŷ	float x; x = foo(i); bar();	→bar L→zap		
cosy	fancy	Cagey	classy	racy
5	-			COSY
1000	<u>F</u> ile <u>O</u> ptions			
	🗢 normal 🚽	profili	.ng 🔷 tra	acing 🔷 b
			-	
	MAKE run	stop e	xit	
	executing: pri	-symmetr	y -pcxx_NUM	MPROC 16
	Start!			
	Kernel B: S	olving a	Poisson pr	oblem on a
	using 12 mul	-		
		Distribu	tion on the	e following
	(0 4 8 12) (1 5 9 13)	3)		
	(2 6 10 14 (3 7 11 15			
	u[lt]:			


FANCY Source Code Browser

University of Oregon

CAGEY Static Callgraph Browser



B. Mohr

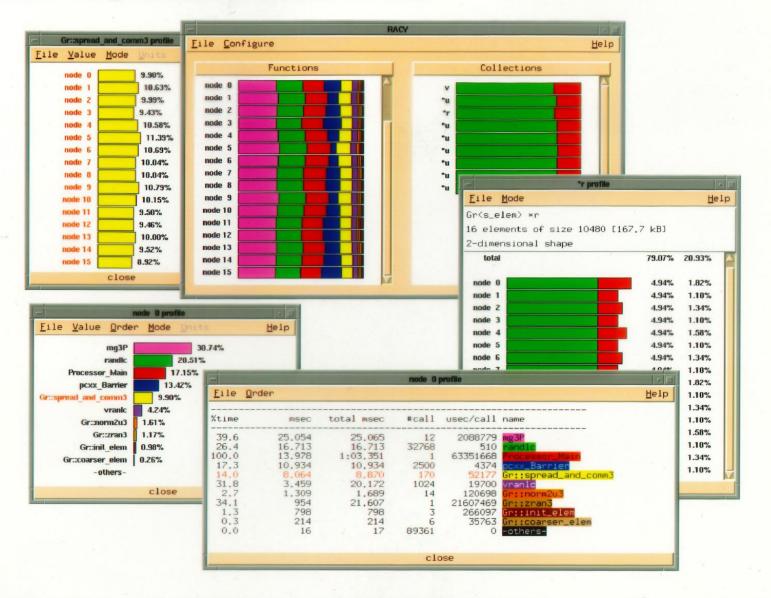
University of Oregon

<u>CLASSY</u> <u>Class Hierarchy Browser</u>

B. Mohr

University of Oregon

PPROF / RACY Parallel Program Profiler


- uses instr tool to dynamically instrument
 - O entry and exit of
 - functions, class member functions, constructors, and destructors
 - in the user application and the pC++ kernel
- □ uses "profile-instrumented" runtime system
- □ data gathered for each profiled function:
 - O time spent in function including and excluding its children
 - O number of calls
- \Box data gathered for each pC++ collection:
 - O number of local and remote accesses per node
- profile data is stored in one file per node in a machine-independent format
- **pprof**: prints ASCII profile report (like UNIX's prof)
- □ racy: graphical profile data browser

Example pprof Output

%time	msec	total msec	#call	usec/call	name
100.0	15.761	28.869	1	28869157	Processor_Main
	4.166	4.172	1	4172459	initw
12.2	3.512	3.512	560567	6	Vector::get
6.9	9	2.004	2	1002201	DistVector::DistVector
	1.919	1.919	44	43628	Barrier
	1.694		32	52958	Vector::allocData
5.5	132	1.578	1	1578414	poisson_solve ParSinTransform
2.9	1	835	32	26117	ParSinTransform
2.9	638	833	32	26055	Vector::SinTransform
100	cal re	emote colle	ction		
		esses num			
	519	496 0	F		
	789	5 1	U		
		utput from (MARY (mean)	_	1 processo:	rs deleted
FUNCTI	ion sum		•		
FUNCTI %time	ION SUM msec	MARY (mean) total msec	#call	usec/call	name
FUNCT] %time 100.0	ION SUM msec	MARY (mean) total msec 28.301	#call	usec/call 28301704	name Processor_Main
FUNCT) %time 100.0 14.4	msec	MARY (mean) total msec 28.301 4.064 3.519	#call	usec/call 28301704 4064819	name Processor_Main initw
FUNCTI %time 100.0 14.4 12.4 7.9	msec 15.312 4.058 3.519 2.246	MARY (mean) total msec 28.301 4.064 3.519 2.246	#call 1 563042 44	usec/call 28301704 4064819 6 51065	name Processor_Main initw Vector::get Barrier
FUNCTI %time 100.0 14.4 12.4 7.9	msec 15.312 4.058 3.519 2.246	MARY (mean) total msec 28.301 4.064 3.519 2.246 2.004	#call 1 563042 44 2	usec/call 28301704 4064819 6 51065 1002249	name Processor_Main initw Vector::get Barrier DistVector::DistVector
FUNCTI %time 100.0 14.4 12.4 7.9 7.1 5.6	msec 15.312 4.058 3.519 2.246 9 116	MARY (mean) total msec 28.301 4.064 3.519 2.246 2.004	#call 1 563042 44 2	usec/call 28301704 4064819 6 51065 1002249	name Processor_Main initw Vector::get Barrier DistVector::DistVector
FUNCTI %time 100.0 14.4 12.4 7.9 7.1 5.6 4.8	msec 15.312 4.058 3.519 2.246 9 116 1.348	MARY (mean) total msec 28.301 4.064 3.519 2.246 2.004 1.578 1.348	#call 1 563042 44 2 1 32	usec/call 28301704 4064819 6 51065 1002249 1578486 42138	name Processor_Main initw Vector::get Barrier DistVector::DistVector poisson_solve Vector::allocData
FUNCTI %time 100.0 14.4 12.4 7.9 7.1 5.6 4.8	msec 15.312 4.058 3.519 2.246 9 116 1.348	MARY (mean) total msec 28.301 4.064 3.519 2.246 2.004 1.578 1.348	#call 1 563042 44 2 1 32 32	usec/call 28301704 4064819 6 51065 1002249 1578486 42138 26418	name Processor_Main initw Vector::get Barrier DistVector::DistVector poisson_solve Vector::allocData ParSinTransform
FUNCTI %time 100.0 14.4 12.4 7.9 7.1 5.6 4.8	msec 15.312 4.058 3.519 2.246 9 116 1.348	MARY (mean) total msec 28.301 4.064 3.519 2.246 2.004 1.578 1.348	#call 1 563042 44 2 1 32 32	usec/call 28301704 4064819 6 51065 1002249 1578486 42138 26418	name Processor_Main initw Vector::get Barrier DistVector::DistVector
FUNCTI %time 100.0 14.4 12.4 7.9 7.1 5.6 4.8 3.0 3.0	msec 15.312 4.058 3.519 2.246 9 116 1.348	MARY (mean) total msec 28.301 4.064 3.519 2.246 2.004 1.578 1.348 845 843	#call 1 563042 44 2 1 32 32	usec/call 28301704 4064819 6 51065 1002249 1578486 42138 26418	name Processor_Main initw Vector::get Barrier DistVector::DistVector poisson_solve Vector::allocData ParSinTransform
FUNCT1 %time 100.0 14.4 12.4 7.9 7.1 5.6 4.8 3.0 3.0 COLLEC	msec 15.312 4.058 3.519 2.246 9 116 1.348 1 640	MARY (mean) total msec 28.301 4.064 3.519 2.246 2.004 1.578 1.348 845 843 MMARY:	#cal1 1 563042 44 2 1 32 32 32 32	usec/call 28301704 4064819 6 51065 1002249 1578486 42138 26418 26356	name Processor_Main initw Vector::get Barrier DistVector::DistVector poisson_solve Vector::allocData ParSinTransform
FUNCT1 %time 100.0 14.4 12.4 7.9 7.1 5.6 4.8 3.0 3.0 COLLEC	TON SUM msec 15.312 4.058 3.519 2.246 1.348 1.348 1 640 TION SU	MARY (mean) total msec 28.301 4.064 3.519 2.246 2.004 1.578 1.348 845 843 MMARY:	#cal1 1 563042 44 2 1 32 32 32 32	usec/call 28301704 4064819 6 51065 1002249 1578486 42138 26418 26356 on #0	name Processor_Main initw Vector::get Barrier DistVector::DistVector poisson_solve Vector::allocData ParSinTransform Vector::SinTransform
FUNCT1 %time 100.0 14.4 12.4 7.9 7.1 5.6 4.8 3.0 3.0 COLLEC	TON SUM msec 15.312 4.058 3.519 2.246 1.348 1.348 1 640 TTION SU Ector <ve 513 ele</ve 	MARY (mean) total msec 28.301 4.064 3.519 2.246 2.004 1.578 1.348 845 843 MMARY: ector> F, comments of si	#cal1 1 1 563042 44 2 1 32 32 32 32 0 1 1 ectic ize 4216	usec/call 28301704 4064819 6 51065 1002249 1578486 42138 26418 26356 on #0 5, 1-dimensi	name Processor_Main initw Vector::get Barrier DistVector::DistVector poisson_solve Vector::allocData ParSinTransform Vector::SinTransform Sional
FUNCTI %time 100.0 14.4 12.4 7.9 7.1 5.6 4.8 3.0 3.0 COLLEC DistVe	TION SUM msec 15.312 4.058 3.519 2.246 1.348 1 640 TION SU SCLOR SU 513 ele 532996	MARY (mean) total msec 28.301 4.064 3.519 2.246 2.004 1.578 1.348 845 843 MMARY:	#call 1 1 563042 44 2 1 32 32 32 32 0 1 1 ectic 841 remo	usec/call 28301704 4064819 6 51065 1002249 1578486 42138 26418 26356 on #0 5, 1-dimensione	name Processor_Main initw Vector::get Barrier DistVector::DistVector poisson_solve Vector::allocData ParSinTransform Vector::SinTransform Sional

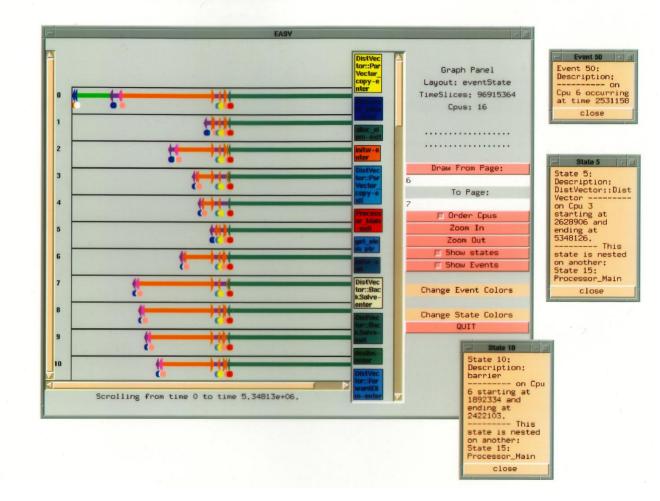
Bernd Mohr

RACY Parallel Program Profile Visualizer

University of Oregon

Event Tracing Support Tools

pcxx_merge:

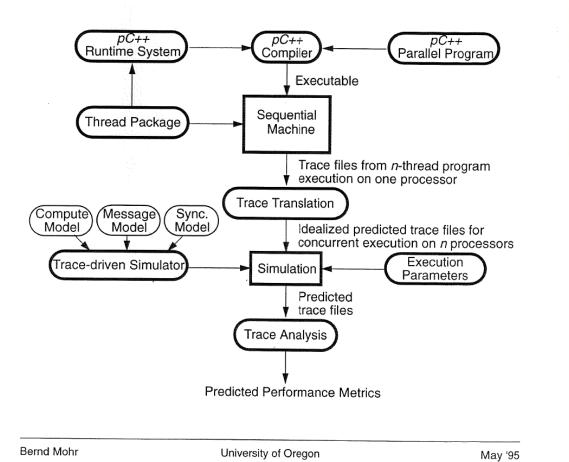

- O merges node traces to global system trace according to timestamps
- establishes global timescale, if target system doesn't have global clock
- D pcxx_convert: trace format converter
 - O generic ASCII
 - O alog
 - O SDDF

Event Trace Tools

easy

- O τ event trace browser for alog format
- SIMPLE (University of Erlangen, Germany)
 - O trace format independent event trace analysis environment
- **Upshot** (Argonne National Laboratory)
 - O simple+portable X11 event trace browser for alog format
- Pablo (University of Illinois)
 - Sophisticated event trace analysis environment based on SDDF format

EASY Event Trace and State Browser


ExtraP Performance Extrapolation and Analysis

ExtraP

Felix 😳

L

- O high-level event tracing of a *n*-thread pC++ program on a uniprocessor workstation
- O trace-driven simulation for prediction of performance on *n*-processor parallel machine

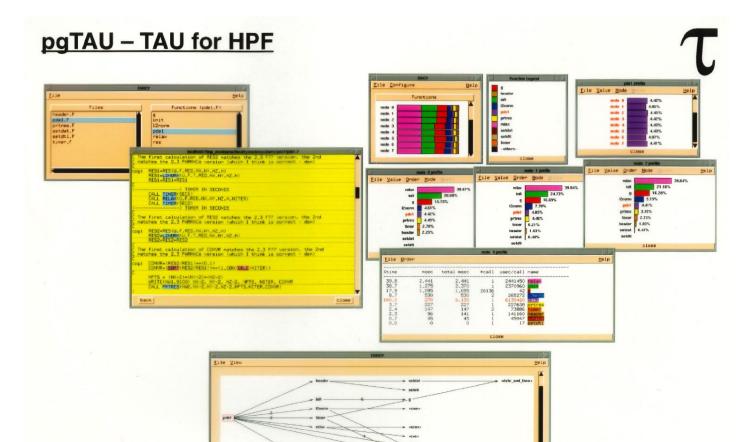
SPEEDY Performance Extrapolation and Analysis

<u>F</u> ile	SPEEDY	Hel
	ameters Run Experiment	Ter
values varying parameter 2	: Number of Processors : 1 2 4 8 16 : Latency : 0 200 400 600 800 1000	
Exe	ecution Time [s]	
10	Latency ×	
8 —	×→× 400 ×→× 600 ×→× 800	
6-	****************	
2-		
1 2 4	8 16 Ner of Processors	
	r 4	
ktraP	General	P Para

Page 33

	Set Parameter 1: Numb	er of Processors	
→ multiples of	from	to	☐ including 1
• powers of	2 from 1	to 16	
random sequenc	e 1		
1			
F	Set Paramete	r 2. Latency	
multiples of	200 from 0	to [1000	T including 1
multiples of			☐ including 1
♦ multiples of> powers of	200 from 0	to 1000	☐ including 1

	ExtraP Parameter Viewer	1.00	
General	Barrier	Pro	cessor
Runtime System	Interconnect Network	Network	Interfac
	Processor		
MinoPo	tio: 0.41		
ProcessMsgT	ype: Interruptible		
Polling Per	10d: 0.0		[us]


JÜLICH SUPERCOMPUTING CENTRE

pC++ - Supported Systems

- □ Shared memory systems
 - O Kendall Square KSR-1 / KSR-2
 - O Sequent Symmetry (under Dynix + PTX)
 - O SGI (Power) Challenge + Onyx
 - O Convex SPP-1
 - O (BBN TC2000)
- Distributed memory systems
 - O TMC CM-5
 - O Intel Paragon
 - O IBM SP-1 / SP-2
 - O Cray T3D / T3E
 - O Meiko-CS2
 - O Workstation Clusters with PVM + MPI (homogeneous)
- UNIX Workstations (SUN, HP, DEC, IBM, SGI, ...)
 - O serialized
 - O thread-based (Pthreads, LWP, AT&T tasks, Awesime)
- The <u>same</u> pC++ program will run <u>without modification</u> on all platforms

BEYOND PC++

- prototype port of
 - O fancy (function browser)
 - O **cagey** (callgraph browser)
 - O **racy** (profile data browser)
 - to HPF compiler system of The Portland Group, Inc.
- changes needed for static browsers
 - O pgdep
 - O tool for generating HPF PDB (Program Data Base)
 - O generated from intermediate f77 sources
 - O om
 - new object manager which provides the TAU standard static browser interface to HPF PDB
- changes needed for profiling
 - O HPF compiler already supports instrumentation
 - rewrite of the profiler runtime system functions to output pprof / racy compatible profile data files

ASSESSMENT

What worked

- Early fully featured parallel programming environment (pC++ and TAU)
 - Easy to use (build, run, analyze)
 - Global features (hyper tools)
 - Although build for / integrated into pC++, TAU was easy to retarget

Undecided

• Moat innovative or worst configuration system (before GNU configure or Cmake)

• What didn't

- C++ parsing is just to complicated to be implemented within an University project
- Didn't support traces very well

THE LATER YEARS

1996 TO NOW / JÜLICH SUPERCOMPUTING CENTRE

Member of the Helmholtz Association

CONTEXT: 25 YEARS OF AUTOMATIC TRACE ANALYSIS

• 1999 – 2004

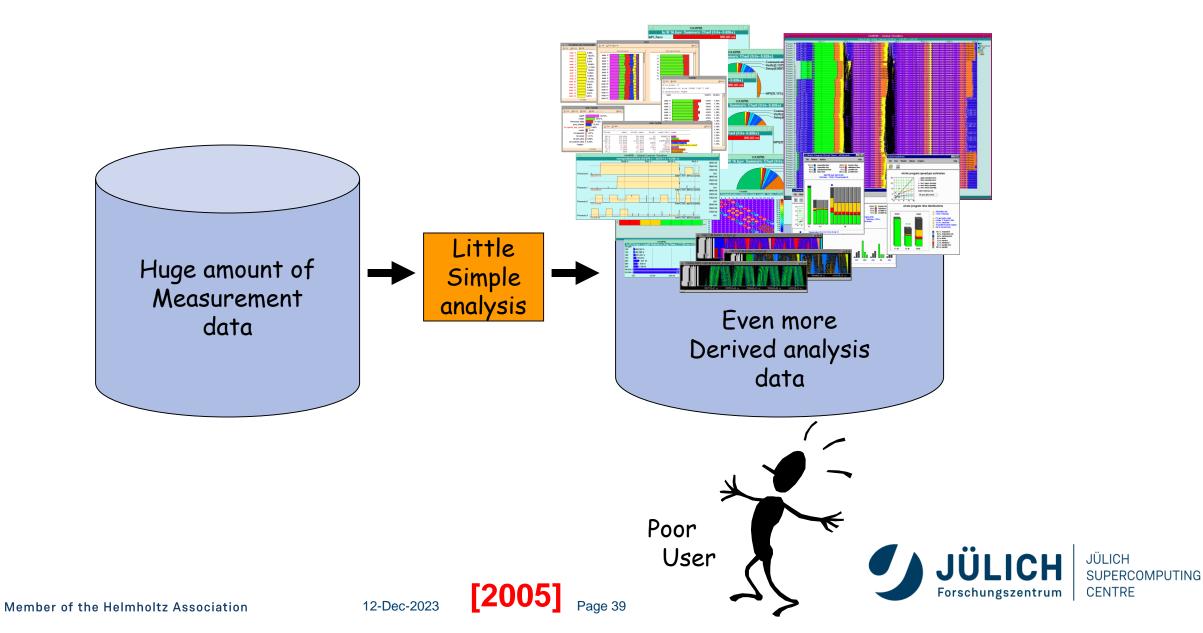
- EU ESPRIT + IST Working Group
- http://www.fz-juelich.de/apart/*

- Sequential analyzer EXPERT
- http://www.fz-juelich.de/zam/kojak/*

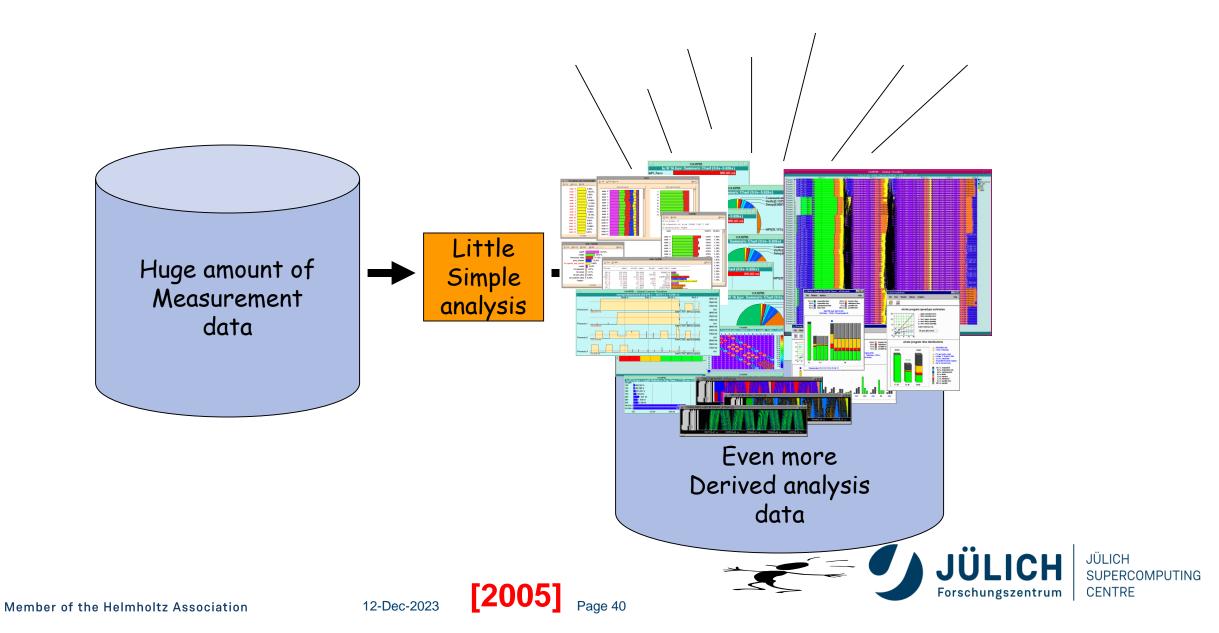
• 2006 – now

- Helmholtz Virtual Institute
- http://www.vi-hps.org/

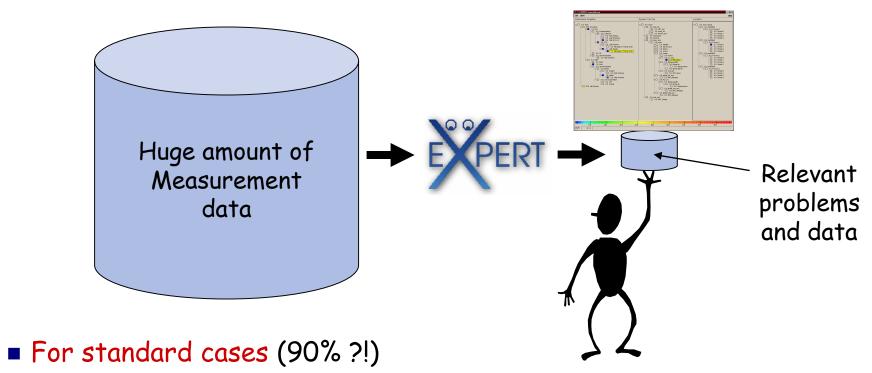
- Parallel analyzer SCOUT
- http://www.scalasca.org


Member of the Helmholtz Association

12-Dec-2023

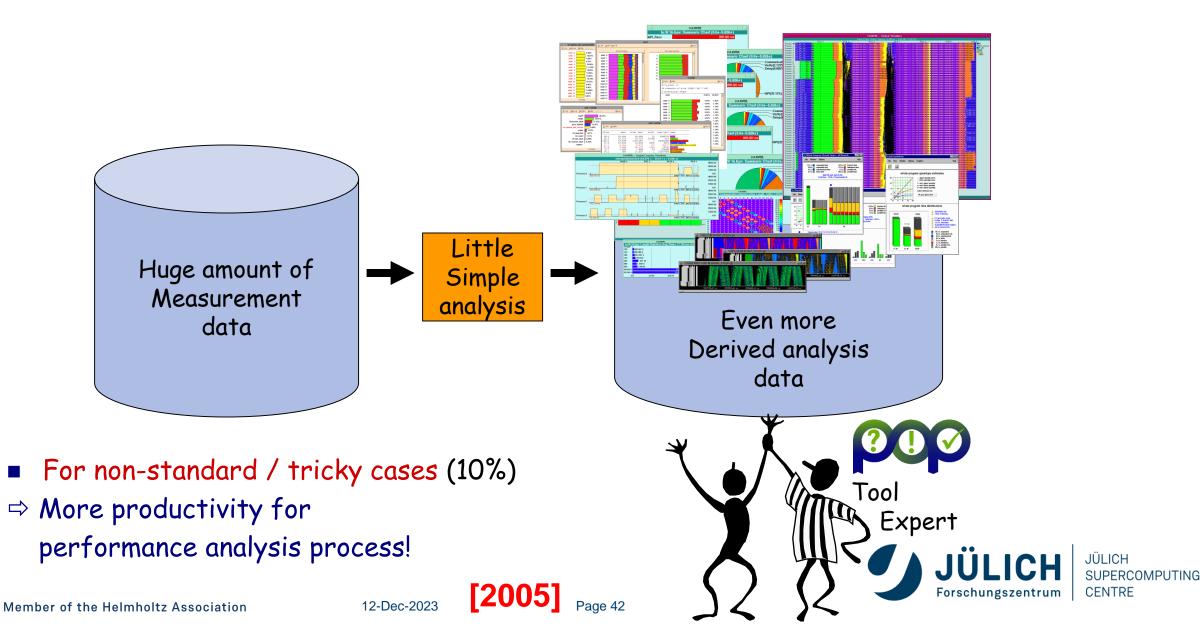

Page 38

*HINT: https://web.archive.org/

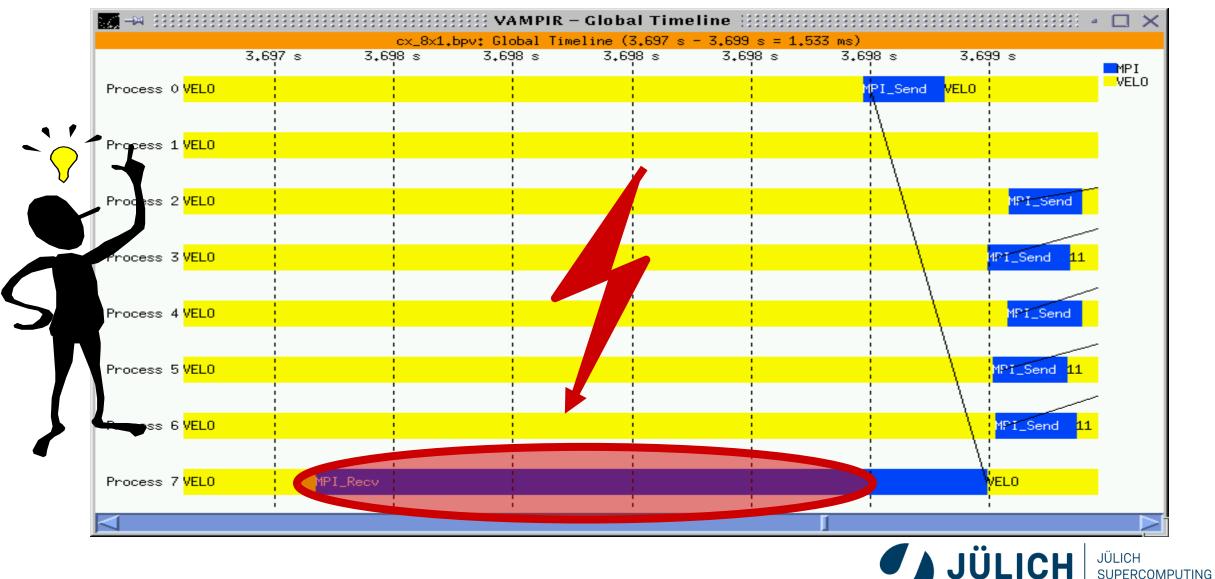

TRADITIONAL PERFORMANCE TOOLS

TRADITIONAL PERFORMANCE TOOLS

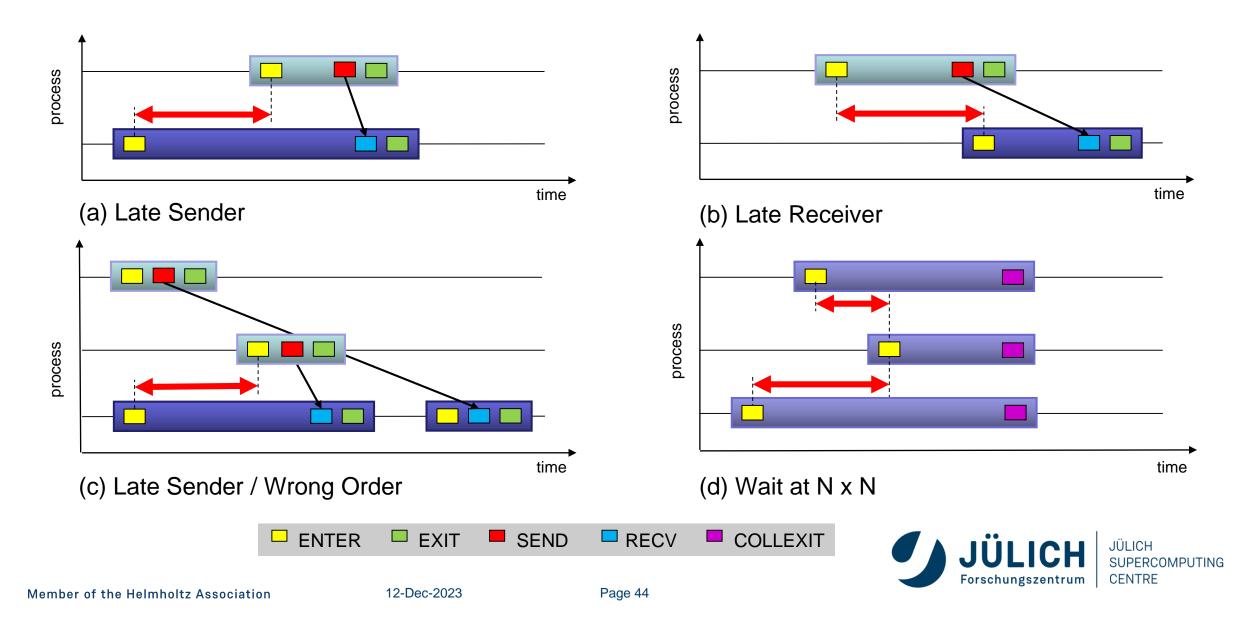
SOLUTION PART 1: AUTOMATIC TOOL



- For "normal" users
- Starting point for experts



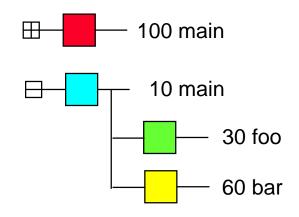
SOLUTION PART 2: EXPERT TOOLS + EXPERT


EXAMPLE AUTOMATIC ANALYSIS: LATE SENDER

CENTRE

Forschungszentrum

EXAMPLE MPI WAIT STATES

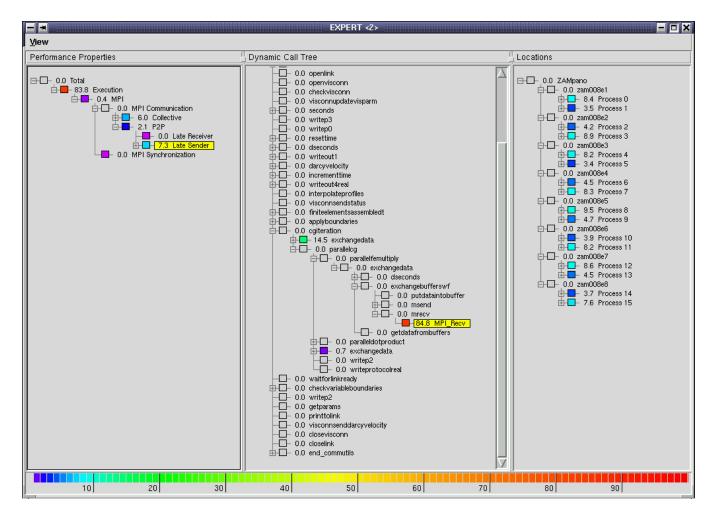


PRESENTATION OF PERFORMANCE BEHAVIOR

- Performance behavior
 - 3 dimensional matrix
 - Hierarchical dimensions
- Weighted tree
 - Tree browser
 - Each node has weight
 - * Percentage of CPU allocation time
 - * E.g. time spent in subtree of call tree
 - Displayed weight depends on state of node
 - * Collapsed (including weight of descendants)
 - * Expanded (without weight of descendants)
 - Displayed using
 - * Color
 - Allows to easily identify hot spots (bottlenecks)

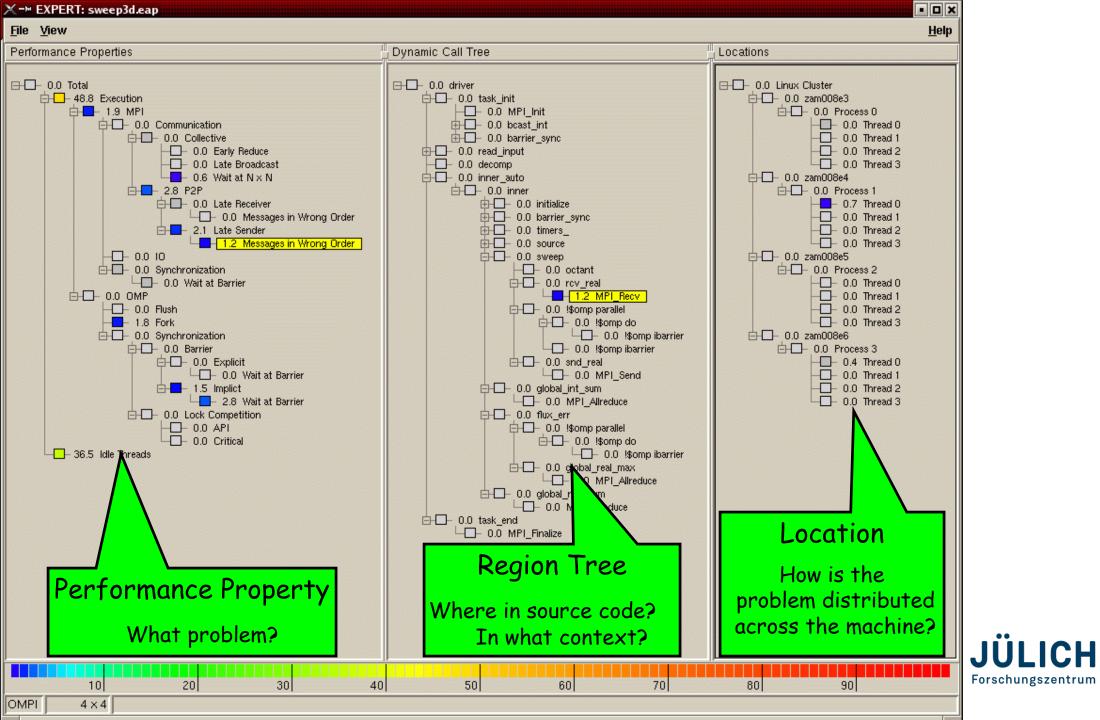
Page 45

- * Numerical value
 - Detailed comparison


2001

Member of the Helmholtz Association

PRESENTATION OF PERFORMANCE BEHAVIOR (2)


- Three views
 - Performance property
 - Call tree
 - Locations
- Interconnected •
 - View refers to selection in left neighbor
- Two modes •
 - Absolute: percent of total **CPU** allocation time
 - Relative: percent of selection in left neighbor
- Collapsing/expanding of nodes
 - Analysis on all hierarchy levels

12-Dec-2023

[2001]

[2003]

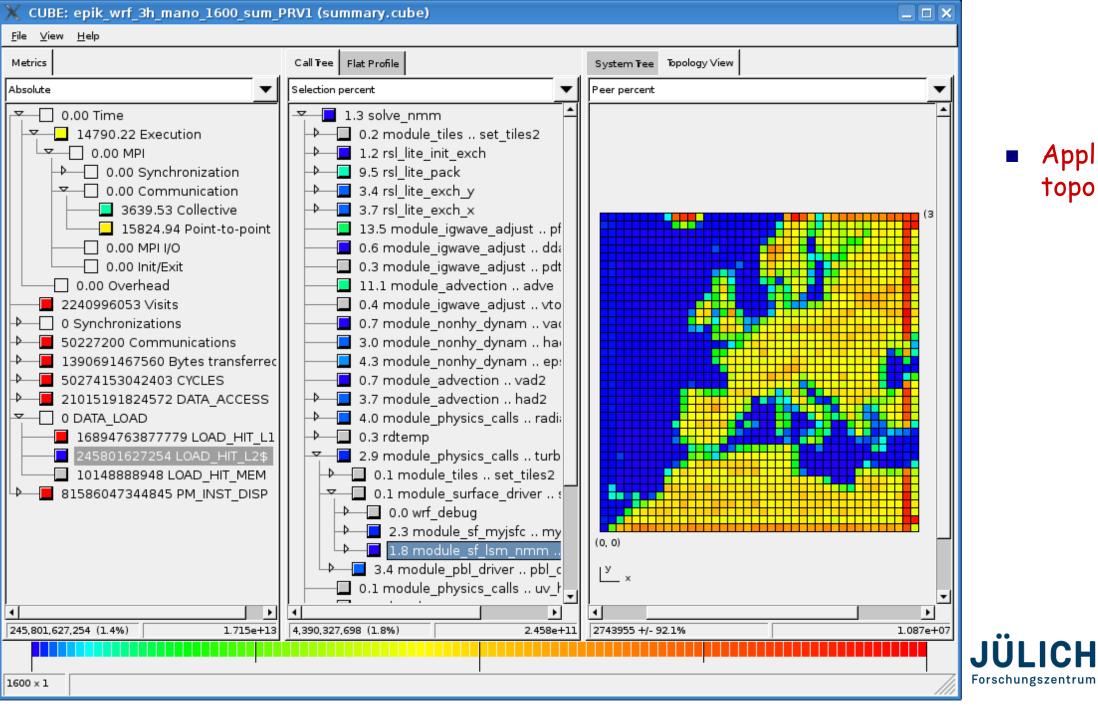
JÜLICH

CENTRE

SUPERCOMPUTING

EXAMPLE: SWEEP3D ON 8192 BG/L PES

Performance Metrics Call Tree System Tree 0.0 Time 0.0 driver 0.0 driver 0.0 O Time 0.0 driver 0.0 driver 0.0 Communication 0.0 MPL Barrier 0.0 Process 1 0.0 Labe Broadcast 0.0 MPL Barrier 0.0 Process 3 0.0 Labe Receiver 0.0 global int_sum 0.0 Process 3 0.0 Join 0.0 synchronization 0.0 MPL_Alifieduce 0.0 O Vrists 0.0 MPL_Alifieduce 0.0 Process 56 0.0 O Process 225 0.0 Process 256 0.0 Process 257 0.0 O Process 256 0.0 Process 257 0.0 Process 229 0.0 Process 220 0.0 Process 322 0.0 Process 3	<mark>. → CUBE: sweep3d_vn8</mark> : ile View Help		• • ×	X → CUBE Cartesian: 0 View Geometry Zoom Colors
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii		Call Tree	System Tree	
		0.0 MPI_init 0.0 MPI_Bcast 0.0 MPI_Barrier 1.2 inner 0.0 MPI_Barrier 98.7 sweep 0.0 MPI_Recv 0.0 MPI_Recv 0.0 snd_real 0.0 MPI_Allreduce 0.0 MPI_Allreduce 0.0 MPI_Finalize	 0.0 R00-M0-Nf 0.0 Process 0 0.0 Process 1 0.0 Process 2 0.0 Process 33 0.0 Process 33 0.0 Process 33 0.0 Process 34 0.0 Process 35 0.0 Process 64 0.0 Process 65 0.0 Process 66 0.0 Process 66 0.0 Process 77 0.0 Process 96 0.0 Process 98 0.0 Process 98 0.0 Process 256 0.0 Process 256 0.0 Process 258 0.0 Process 258 0.0 Process 259 0.0 Process 288 0.0 Process 299 0.0 Process 291 0.0 Process 321 0.0 Process 322 0.0 Process 323 0.0 Process 323 0.0 Process 352 0.0 Process 353 	∠y×


• 🗆 🗙 7 (63, 7, 15) (63, 7, 14) [,] (63, 7, 13) (63, 7, 12) (63, 7, 11) (63, 7, 10) [,] (63, 7, 9) **W** (63, 7, 8) [,] (63, 7, 7) **7** (63, 7, 6) (63, 7, 5) 🐺 (63, 7, 4) (63, 7, 3) y (63, 7, 2) (63, 7, 1) y (63, 7, 0) e-02

New topology display

[2007]

- Shows distribution of pattern over HW topology
- Scales to larger systems

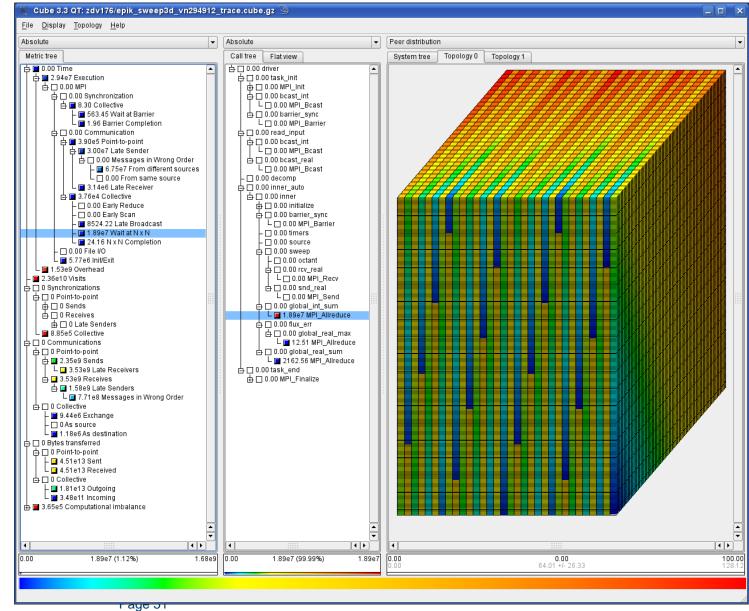
[2009]


Application topologies

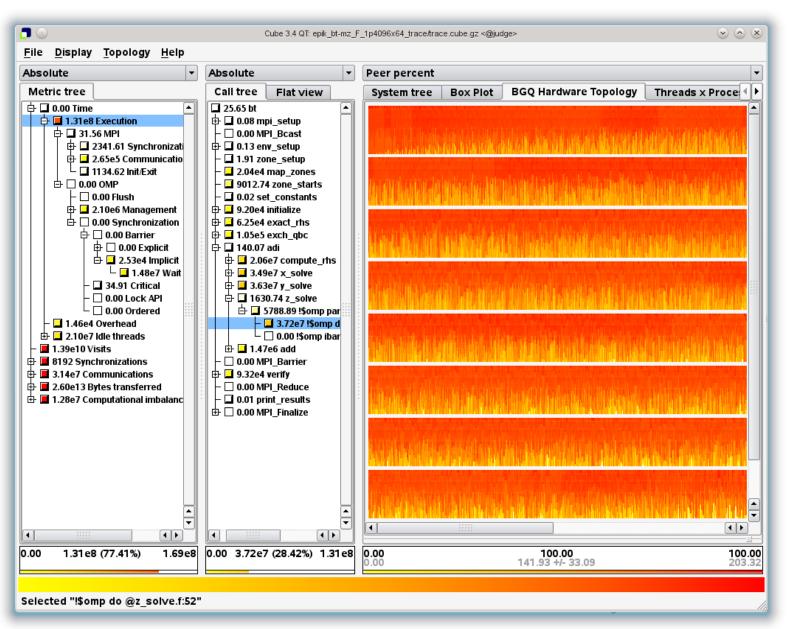
JÜLICH SUPERCOMPUTING CENTRE

SCALASCA EXAMPLE: CESM SEA ICE MODULE

Late Sender Analysis + Application Topology


- Shows distribution of imbalance over topology
- MPI topologies are automatically captured

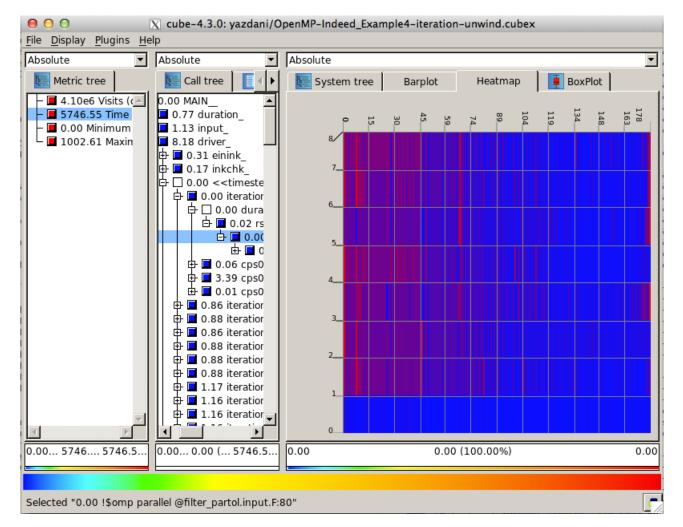
SCALASCA TRACE ANALYSIS SWEEP3D@294,912 BGP [2010]


- •10 min sweep3D runtime
- 11 sec analysis
- 4 min trace data write/read (576 files)
- •7.6 TB buffered trace data
- 510 billion events

B. J. N. Wylie, M. Geimer, B. Mohr,
D. Böhme, Z.Szebenyi, F. Wolf:
Large-scale performance analysis
of Sweep3D with the Scalasca
toolset. Parallel Processing Letters,
20(4):397-414, 2010.

12-Dec-2023

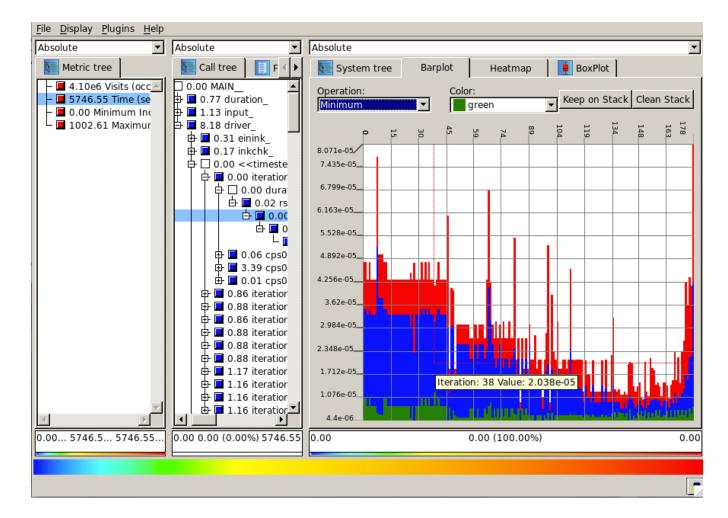
SCALASCA TRACE ANALYSIS BT-MZ@1,048,704 BGQ [2013]



CUBE VIZ PLUGINS: PHASE HEATMAP

Phase profiling

- Collects data for each instance of phases marked in program instead of aggregating it
- Shows data over "time" (phase instances) for each rank/thread



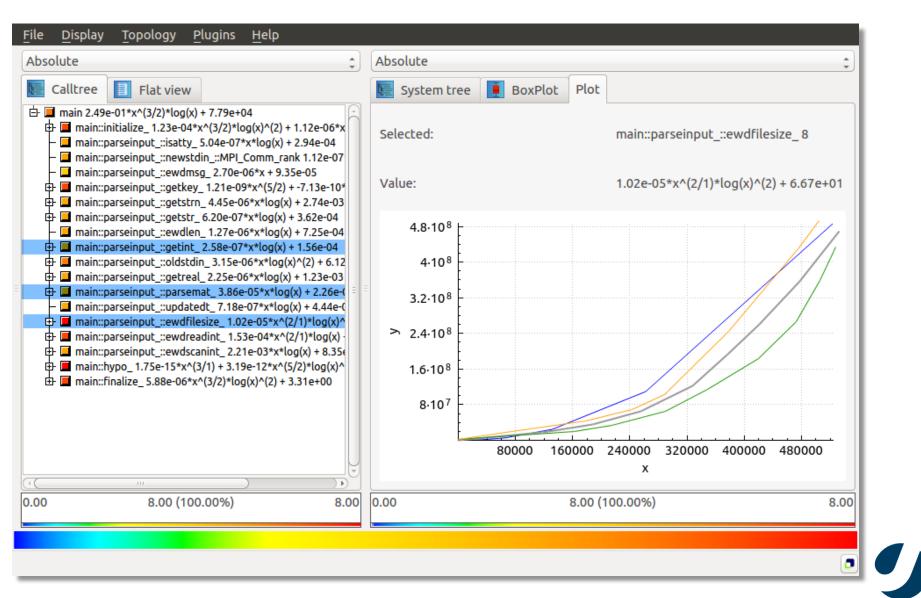
CUBE VIZ PLUGINS: PHASE BARPLOT

Phase profiling

- Collects data for each instance of phases marked in program instead of aggregating it
- Shows data over "time" (phase instances) for each rank/thread

[2015]

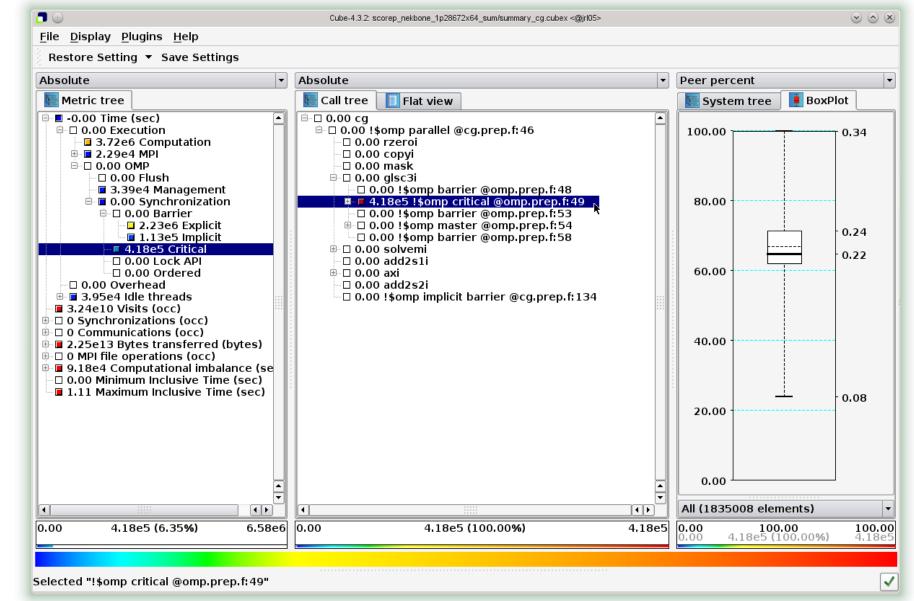
CATWALK: MODELING RESULT VISUALIZATION


[2015]

JÜLICH

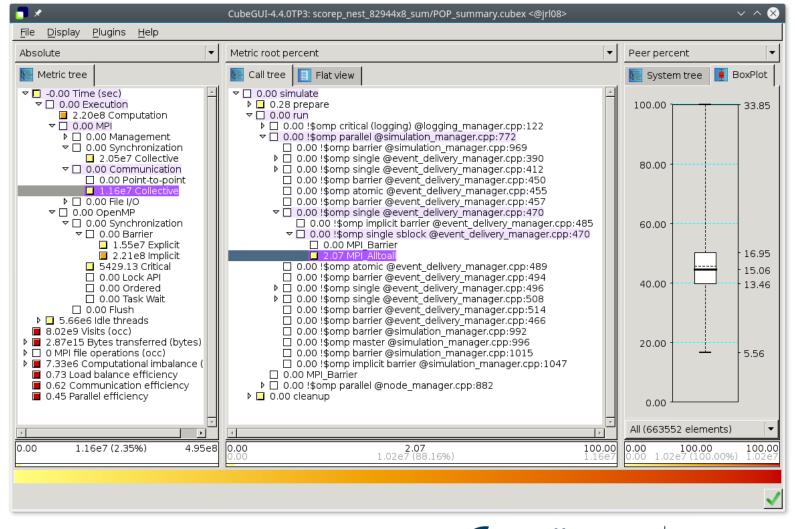
CENTRE

Forschungszentrum


SUPERCOMPUTING

Member of the Helmholtz Association

SCALASCA: 1,835,008 THREADS TEST CASE


- Nekbone
- CORAL benchmark
- JuQueen experiment
- 28,672 x 64 = 1,835,008 threads
- Load imbalance at OpenMP critical
- section

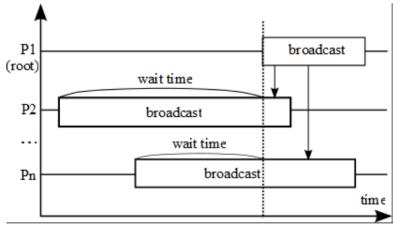
[2016]

SCALASCA: USER ANALYSIS OF NEST ON K COMPUTER

- Jülich nest:: neural network simulator code
- Measurement of full system K computer run
 - 82,944 nodes
 - 663,552 threads
- Performance analyst
 - Itaru Kitayama (RIKEN)
- Analysis of MPI and OpenMP communication and synchronization at large scale

You KNOW YOU made it ...

"COPY" YOUR STUFF



Introducing the Intel[®] Trace Analyzer and Collector Performance Assistant

Motivation: Improve method of performance analysis via the GUI Solution:

- Define common/known performance problems
- Automate detection via the Intel® Trace Analyzer

Example: A "Late Broadcast" is not easy to identify with existing views

Source:

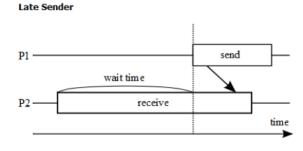
https://software.intel.com/en-us/videos/quickly-discover-performance-issues-with-the-intel-trace-analyzer-and-collector-90-beta

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Optimization Notice

(intel)

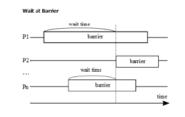
[2014]

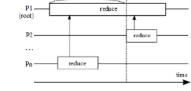


Σ

Which Performance Issues are automatically identified?

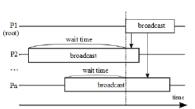
Point-to-point exchange problems:

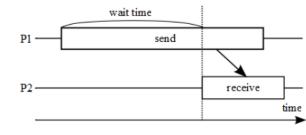

Late Sender


Late Receiver

Problems with global collective operation performance:

Wait at Barrier




waittime

Late Broadcast

Late Broadcast

Late Receiver

Source:

https://software.intel.com/en-us/videos/quickly-discover-performance-issues-with-the-intel-trace-analyzer-and-collector-90-beta

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Optimization Notice

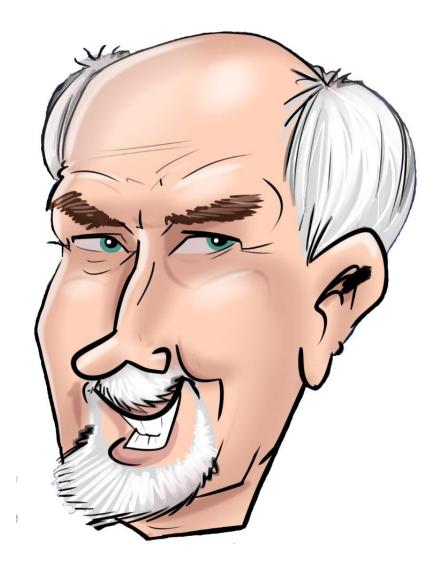
(intel

14

JÜLICH SUPERCOMPUTING CENTRE

ASSESSMENT

- Score-P / Scalasca installed on many HPC sites world-wide
- Used in daily work by performance analysts (e.g. POP CoE)
- User interface consistent for 23 years (but many enhancements)
- Support by vendors: Intel, AMD, (Siemens)
- Lots of **work** behind the scenes
 - Scalasca1 (Epilog) ⇒ scalasca2 (Score-P)
 - Constant bug fixing
 - Constant scaling improvements
 - Lately: MPI 3+4, OpenMP 3+4+5, OMPT, F2008 MPI interface, Pthreads, ...
 - GPU support: OpenMP target, OpenACC, CUDA HIP/ROCm, Kokkos, ...



FUTURE WORK

- Memory and vectorization performance analysis
 - Hard to capture performance data
 - Only possible if suitable hardware counters are provided
 - VERY processor specific ⇒ hard for open-source portable tools
- Trend towards task-based / asynchronous programming models
 - Very dynamic execution might be non reproducible ⇒ off-line tools fail
 - Hard to get the "big picture" ⇒ good high-level metrics still missing here
 - 3-pane Cube display shows its limitations here ... ?!
- Trend towards more modern programming languages (Python, C++)
 - How to automatically instrument template-based frameworks and programming styles?
 - How to present the data on Python level (and not on the interpreter low-level)?
 - Performance assessment of data analytics codes

QUESTIONS ?

