
Advancing Research Data Management with Python-Flask Applications

Helmholtz Metadata Collaboration | Conference 2023

Helmholtz-Zentrum Dresden-Rossendorf · FWKT · Dr. Kristin Tippey · k.tippey@hzdr.de · www.hzdr.de



Problem Statement

11.10.2023 Advancing Research Data Management with Python-Flask Applications2

PROBLEM STATEMENT

Data acquisition (DAQ) systems continue to advance in power, but manual data input will remain required as 

experiments necessarily check for the unforeseen. Researchers often use electronic lab books or fallback 

solutions like Excel or Google Docs to record actions and events, highlighting the need for an intuitive 

interface that enables live- and post-processing while remaining linkable to DAQ systems. 

CHALLENGES

A major challenge lies in the dynamic nature of the incoming information, rendering fixed-structure 

databases like SQL impractical. What can we read in automatically? What manual input do we need?

APPROACH

To tackle this issue, we have developed intuitive Python-Flask applications that harness the inherent 

flexibility of document-based databases, particularly MongoDB, for storing curated and query-ready data. 

Although these applications were initially tailored for the laser-particle acceleration group at HZDR as part of 

the DAHPNE4NFDI project, the intention is to generalize their utility.



Enter Flask WebApps

Why Flask?

Flask is a micro web framework written in Python. 

Like Django but simpler, and less strictly structured.

Why WebApps?

Available anywhere.

What can you do with them?

Turns out, a lot. 

- Configurable forms

- Configurable selections

- Search and changeability

11.10.2023 Advancing Research Data Management with Python-Flask Applications3



Enter Flask WebApps

1. ShotSheet [ions, electrons]

• Facilitates manual data entry during experiments via a database form

• Can be easily – and on-the-fly – changed and allows also to store the DAQ configuration per entry

• Choices can be pre-configured or pulled from sources like a MediaWiki lab documentation system

• Entries are directly written to a MongoDB

    2. ZeroMQ Relayer

• Extracts metadata from the experiment’s drive laser (via zeroMQ) and forwards this in real-time to visualization 

app and to Kafka

• Enables harmonized metadata like ID’s and timestamps, either appended to data as well as logged for post-hoc 

reconstruction

    3. KafkaWatcher

• Functioning as an intermediary, this app receives data from the Relayer and publishes it to MongoDB 

• Flask-SocketIO is used for real-time reception of Kafka messages

11.10.2023 Advancing Research Data Management with Python-Flask Applications4

Need: Issues extending and FAIRizing current ShotSheet

Need: No existing dedicated Draco counter for counting triggered shots

Need: Receive/monitor new Draco counter



Shotsheet: Evolution of the Shotsheet

Started as Excel

• Limitations … often all the interesting diagnostics ended up 

in the first column of Comments

• Difficult to catalogue post-experiment

• Not very FAIR

Moved to Microsoft Access

• Better tracking of data corresponding to individual shots

• Slow loading

• Issues accessing/exporting data

• More FAIR but still not really FAIR

• Lately limitations on number of diagnostics has accelerated 

the need for a new method

11.10.2023 Advancing Research Data Management with Python-Flask Applications5



Shotsheet: A Python-Flask WebApp with a MongoDB Backend

Why????

Python Physicists like python. I already had a 

decent grasp on Python so it was the least 

extra work to getting started

Flask Adaptable and relatively simple microframe-

 work with wide range of supported features

MongoDB NoSQL document-based database

Other supporting Elements

WTForms form validation

Javascript dynamic features

Jinja2  template management

Bootstrap clean consistent form layouts

11.10.2023 Advancing Research Data Management with Python-Flask Applications6

Newest Shotsheet, Built separate version for Ions and Electrons

Problem: Issues extending and FAIRizing current Shotsheet



Working on basic user tracking for access to 
Add/ModifyShot [User] and RemoteUserLogout [Admin] pages

11.10.2023 Advancing Research Data Management with Python-Flask Applications7



Shotsheet [ions]: The different tabs

11.10.2023 Advancing Research Data Management with Python-Flask Applications8

Outline



Add Shot

11.10.2023 Advancing Research Data Management with Python-Flask Applications9



Modify Shot

11.10.2023 Advancing Research Data Management with Python-Flask Applications10



Modify Shot

11.10.2023 Advancing Research Data Management with Python-Flask Applications11



Add/Modify Diagnostic Presets

11.10.2023 Advancing Research Data Management with Python-Flask Applications12



Add/Modify Diagnostics

11.10.2023 Advancing Research Data Management with Python-Flask Applications13



Add/Modify Form Layout

11.10.2023 Advancing Research Data Management with Python-Flask Applications14



Search!

11.10.2023 Advancing Research Data Management with Python-Flask Applications15



Shotsheet [electrons]: The different tabs

11.10.2023 Advancing Research Data Management with Python-Flask Applications16

Outline



Shotsheet: Basic Setup

11.10.2023 Advancing Research Data Management with Python-Flask Applications17

Planned deployment implementation



Demo?

Check out our WIKI page – https://athene.fz-rossendorf.de/fwk/FWKT:ShotSheet_(ExL)

IONS*

https://149.220.59.21:8080/

ELECTRONS*

https://149.220.59.21:8082/

* HTTPS for security and to alleviate CSRF token errors from when using regular http

* Currently self-certified https, working on getting real certificates and memorable server names on fwklux9/m:

- https://shotsheet-ions.fz-rossendorf.de:8080

- https://shotsheet-electrons.fz-rossendorf.de:8082

- https://kafkawatcher.fz-rossendorf.de:9999

11.10.2023 Advancing Research Data Management with Python-Flask Applications18

https://athene.fz-rossendorf.de/fwk/FWKT:ShotSheet_(ExL)
https://149.220.59.21:8080/
https://149.220.59.21:8082/


ZeroMQ Relay: LabView vs. Flask for Draco Shot Counter

Labview ZeroMQ Relay                               -> Python Flask ZeroMQ Relay

No ability to message out with Kafka  Able to message directly out with Kafka

Complicated license situation   No license issues

       

LabView Credit: Wolfgang Horn   python waitress-serve --port=8888 zeromq_relay:app

11.10.2023 Advancing Research Data Management with Python-Flask Applications19

FWK573

Problem: No existing dedicated Draco counter for counting triggered shots



ZeroMQ Relay: Main page, selection page, debug page

11.10.2023 Advancing Research Data Management with Python-Flask Applications20

• Displays incoming ZeroMQ data in tabular and graphical form

• User input of nicknames, campaigns, thresholds, local trigger counts

• Triggers upon incoming values > threshold values

• Relays triggered data to Kafka (MongoDB) and all data to ZeroMQ

(future: software triggers)

Demo? 

http://149.220.59.31:8888/

http://149.220.59.31:8888/


11.10.2023 Advancing Research Data Management with Python-Flask Applications21



Kafka Receiver and Relay to 
MongoDB

11.10.2023 Advancing Research Data Management with Python-Flask Applications22

• Shows incoming Kafka messages in real time, 

relays them to MongoDB, and allows you to 

search through all the entries

Specifics:

• Connected to kafka broker on fwklux9

• Serve KafkaWatcher from fwklux9 with: 

gunicorn --certfile=cert.pem --keyfile=key.pem  

--worker-class eventlet -w 1 -b 0.0.0.0:9999 

"KafkaGUI:create_app()"

• Access on FWKTS07 or another computer on 

the network at https://149.220.59.21:9999/

Problem: Need to receive/monitor new Draco counter

https://149.220.59.21:9999/


ZeroMQ Relay and KafkaWatcher: Basic Setup

11.10.2023 Advancing Research Data Management with Python-Flask Applications23

The main pieces requiring configuration

zeromq_relay.py

- Processes 

and/or relays 

messages

KafkaWatcher.py

- Consumes incoming 

messages

- Relays to MongoDB

- Allows searching of 

MongoDB data

ZMQ PROCESSOR

Software triggers 

(in the future)

MongoDB

Currently only 

limited test data

Kafka 

Broker

KT_mongoDB_GUI.py

- Allows searching of 

MongoDB data



ZeroMQ Relay and KafkaGUI: Where to get the different pieces

11.10.2023 Advancing Research Data Management with Python-Flask Applications24

zeromq_relay.py

- Processes 

and/or relays 

messages

KafkaWatcher.py

- Consumes incoming 

messages

- Relays to MongoDB

- Allows searching of 

MongoDB data

MongoDB

Currently only 

limited test data

…/fwklux9-kafka

…/kafka-gui

…/zeromq-broker

> Generated test 

read-only account

> Working on 

getting new db 

specifically for this 

purpose

…/kafka-triggers-mongodb-gui

> Can be run from anywhere you 

 can access the MongoDB

KT_mongoDB_GUI.py

- Allows searching of 

MongoDB data

Hosted by GitLab

Still under development but 

available upon request. 

Plan to share publicly.

Kafka 

Broker

https://codebase.helmholtz.cloud/tippey27/fwklux9-kafka
https://codebase.helmholtz.cloud/tippey27/kafka-gui
https://codebase.helmholtz.cloud/tippey27/zeromq-broker
https://codebase.helmholtz.cloud/tippey27/kafka-triggers-mongodb-gui


DB = fwktTest

Collections :

Shotsheet [ions] {

counter

diagnostics

diagnostics.[diagnostic names]

UserSelections

shots}

Shotsheet [electrons] {

E_COUNTER

E_LAYOUTS

SHOTS}

Kafka Receiver and MongoDB Relay { 

KafkaTriggersDraco }

Actual Data flow

11.10.2023 Advancing Research Data Management with Python-Flask Applications25

Fwklux9:

8080

Shotsheet [ions]

Fwklux9:

8082

Shotsheet [electrons]

Fwklux9:

9999

Kafka Receiver and 

MongoDB Relay

Fwk573: 

8888

ZeroMQ Relay

MongoDB

vlsmongo.fz-

rossendorf.de

user input

user input

GrafanaHemera

rw

r r

Python 

access

r

FUTURE: notifying 

users of shotsheets 

when shot occurs, 

automated capture 

of things like motor 

positions, 

integrating with 

available systems



Add-On: SciCat Upload Tools for Simulationists

Developed SciCat metadata extraction and 

upload to SciCat tools for

• Smilei: extracts input.py files

• picmi-PIConGPU: extracts from python files

• PIConGPU: extracts from cfg, param files 

across folders. Working on improved 

extraction mechanisms, curation

• WarpX: extracts from txt input file

Currently undergoing testing and refinement

Configuring beyond scripts into GUI’s? Flask?

11.10.2023 Advancing Research Data Management with Python-Flask Applications26

CHALLENGE: Metadata most useful when thoroughly 

curated, i.e. when key/value/unit groupings have easily 

recognizable meaning… However, this is difficult to 

achieve as even simulation scripts can vary greatly

Solution favored by supervisor: Suggest users start 

from cookiecutter base script & refine their simulations 

from there.  ** Can still allow variations beyond that but 

additional metadata cannot be automatically curated. 

** Need to educated ingestors how to update code



Review

Current: Developed apps for research data management application, focus around improving shot tracking

- Shotsheet: Currently entirely manual data logging (served with gunicorn by fwklux9)

- ZeroMQ Relay: Tracks and relays shot triggers sent from Draco laser (served with waitress by fwk573 

gateway) via KafkaBroker (hosted by fwklux9)

- Kafka Receiver and MongoDB Relay: Receives real-time kafka messages from KafkaBroker and emits to 

WebApp for monitoring, sends to mongoDB for logging and searching (served with gunicorn by fwklux9)

Additionally, for simulations, uploader tools allow uploading of curated metadata to SciCat

Future: Integrate with existing systems, mediawiki, motor trackers, etc. towards automation, integrate directly 

with SciCat, …

** We hope to improve on these apps and work further with experimentalists and simulationists towards an 

increasingly streamlined data/metadata pipeline **

11.10.2023 Advancing Research Data Management with Python-Flask Applications27



Thank you for your attention

Questions? Suggestions? Collaboration ideas?

11.10.2023 Advancing Research Data Management with Python-Flask Applications28

Shotsheet [ions] https://149.220.59.21:8080/ 

and [electrons]   https://149.220.59.21:8082/

ZeroMQ Relay
http://149.220.59.31:8888/

Kafka Receiver and MongoDB Relay
https://149.220.59.21:9999/

SciCat Upload Tools

Fwklux9:8080, 

8082

Fwklux9:9999
Fwk573:8888Hosted by:

k.tippey@hzdr.de

https://149.220.77.108:8080/
http://149.220.59.21:9999/
http://149.220.77.108:8080/
https://149.220.77.108:8082/
http://149.220.59.21:9999/
http://149.220.77.108:8082/
http://149.220.59.31:8888/
https://149.220.59.21:9999/
mailto:k.tippey@hzdr.de

	Slide 1: Advancing Research Data Management with Python-Flask Applications
	Slide 2: Problem Statement
	Slide 3: Enter Flask WebApps
	Slide 4: Enter Flask WebApps
	Slide 5: Shotsheet: Evolution of the Shotsheet
	Slide 6: Shotsheet: A Python-Flask WebApp with a MongoDB Backend
	Slide 7: Working on basic user tracking for access to  Add/ModifyShot [User] and RemoteUserLogout [Admin] pages
	Slide 8: Shotsheet [ions]: The different tabs
	Slide 9: Add Shot
	Slide 10: Modify Shot
	Slide 11: Modify Shot
	Slide 12: Add/Modify Diagnostic Presets
	Slide 13: Add/Modify Diagnostics
	Slide 14: Add/Modify Form Layout
	Slide 15: Search!
	Slide 16: Shotsheet [electrons]: The different tabs
	Slide 17: Shotsheet: Basic Setup
	Slide 18: Demo?
	Slide 19: ZeroMQ Relay: LabView vs. Flask for Draco Shot Counter
	Slide 20: ZeroMQ Relay: Main page, selection page, debug page
	Slide 21
	Slide 22: Kafka Receiver and Relay to MongoDB
	Slide 23: ZeroMQ Relay and KafkaWatcher: Basic Setup
	Slide 24: ZeroMQ Relay and KafkaGUI: Where to get the different pieces
	Slide 25: Actual Data flow 
	Slide 26: Add-On: SciCat Upload Tools for Simulationists
	Slide 27: Review
	Slide 28: Thank you for your attention  Questions? Suggestions? Collaboration ideas?  

