Image recons

e R

Martin Burger
DESY Computational Imaging Group

Helmholtz Imaging
Universitat Hamburg

HELMHOLTZ



Image Reconstruction

Images (Videos) and their manipulation are part of our daily life

First step of image formation often underestimated, although often the
enabling part, cf. CT = Computed Tomography

Information / quality loss in image formation / reconstruction can hardly
be recovered later

Strong demand on methods for reconstruction and uncertainty
guantification in many application fields, from nano to macro
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Emission Tomography

Active / Passive

|ldea: detect photons emitted e.g. from radioactive
decay, with some kind of directional information

« Coincidence based (e.g. PET)
« Collimator based (e.g. SPECT)

« Energy based (Compton effect)
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Image reconstruction from synchrotron x-ray sources
Ptychographic / Holographic Tomography

Wittwer et al 2023

(a) Far-Field Diffracton Patterns
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Image reconstruction across scales and planets

From nano to macro, from intracellular to outer space cone
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4Pi Deconvolution of Deconvdlition in Astrof6iiy
Syntaxin PC12 (with Donath et al 2022
Hell Lab, Gottingen)

Standard

Bregman-EM-GTV

STED Deconvolution of Bead Crystal Structure (with Hell
Lab, Gottingen)

18FDG-PET Reconstruction from short time data
(with Nuclear Medicine, Minster)
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PET-MR, Rasch-Brinkmann-Burger 2017

Enérgy Efficient THZ Imaging on Mars,
with DLR Berlin IMAGING
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Modern image reconstruction

Model based view

Core forward

Prior |
_ model noise sampling
B degradation (main physics of >
the image
formation)

-

Prior knowledge

(structural / data-driven)
Model errors correction, e |
Additional physics of the | ——— uncertainties I-‘I{_I

image (e.g. motion)
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Model based approaches

The classical way of image reconstruction

Formulation as an inverse problem

« Derive physical model of(idealized) forward operator mapping from image to data
« Derive statistical model of noise (e.g. Poisson distribution for photon counts)

« Derive mathematical model of favourable images and structures (e.g. sparsity)

« Possibly add uncertainties

Condensed in Bayesian posterior model

1
m(ulf) = m(flu)mo(u)
T« (f)
Likelihood (from u to f) includes forward and noise model, prior includes model of favourable images I'“ |
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Model based variational methods

Point estimates
Bayesian MAP estimate

u € argmin (— log 7( f|u) — log mo(u))
U
Related to variational regularization method

U € argman (F(Ku, f )+ orJ(u))

Simplest case: Gaussian likelihood / prior = quadratic functional = linear equation
Forward operator K, data fidelity F, regularization functional J

Forward operator: physics (examples: convolution, Radon transform, wave propagation, ...) '-m I
Data fidelity: stochastics (examples: additive Gaussian noise, Poisson distribution, ...)
Regularization: art ? How to translate structural properties into a functional ?
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Model based variational methods

Example: PET
Radon + photon count Radon + photon + Radon + photon +
noise scattering scattering + attenuation
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Model based variational methods

Improving noise models

Example: PET

&

o

Right noise model
No regularization

B Right noise model

C Wrong noise model
Post smoothing

TV regularization

Cardiac '°H,0 PET: Sawatzky, Brune, Miller, Burger 2009
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Approx. noise model
TV regularization

o

Right noise model
TV regularization
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Variational Models

The role of regularization

Recall variational model

U € argmin (F(Ku, f )+ aJ(u))
U
Optimality condition

K*0,F(Ku, f) +ap =0, p € 0J(u)

Every solution satisfies the source condition (range condition) .

* _ 2 _
p= K'w T() = S lull® = p =

This is an abstract smoothness condition, determines essentially which solutions are preferred / artefacts
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Folklore of Reconstruction

Use no / minimal prior knowledge

Every reconstruction method uses some prior knowledge, but often it is hidden

Example: fixed point iteration for /Xu = f / gradient method for least squares [ Ku — f||2
uPt = uF — TR K (Kub — f)

Compute
u' = u’ + K* (7Y f — PKuY) = ¥ + K*w’
And
w =+ K*(r'f - Ku') = o + K*ol + K* (7' f — ' Kut) = o + K w?
Inductively we see
u® = u + K*w”

DESY.
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Model based regularizations

Images with sharp edges

Basic idea from denoising: want to smooth out random noise — local averaging

Simplest idea: Dirichlet energy - quadratic gradient regularization (Gaussian prior)
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Leads to oversmoothing — no sharp edges “BINNnnn NERRRRERR]

50

10 20 30 40 50 60 10 20 30 40 50 60

30

Regularity theory works against us: take K : I’ >Y

Optimality condition yields p = —Au = K*w € L*

rm\"n I

Regularity at least u & H?  does not allow sharp edges H
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Model based regularizations

Images with sharp edges

Alternative idea: p-Laplacian energy

Similar regularity forp > 1

Limit: total variation TV(u) — ’U’BV — sup / uV - g dzx
geCF()4,geC JQ

C={ge L®()|]|g(x)] <1 a.e. in Q}

Optimality condition K*0,F(Ku, f)+aV-g=0

geClC /g-dDu=|’U,’BV
Q)

P\“ﬂ I

Various extensions to cure bias (Bregman iterations) and to avoid staircasing (total generalized variation) H |
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Model based regularizations

TV models on sparse angle tomography

Only 50 angles between -90 and 90 degrees measured (Go6ppel et al 2023)
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Choice of regularization

. 16
Source condition

V-g=K'w

Note that g corresponds to (generalized) normal vector field on level sets (discontinuity sets) of u, its divergence
equals mean curvature

Consequence: solutions of TV regularization can
be discontinuous, but have nice discontinuity sets
(smooth curvature)

(a) Test image (ground truth) (b) Test image corrupted by additive Gauss
noise (u = 0, 02 = 0.25)

Similar for sparsity and other one-
homogeneous regularizations

(c) Anisotropic TV denoising result (o = 10) (d) Isotropic TV denoising result (a =1

DESY



Total Variation Regularization

. : : . : 17
Example: PET reconstruction (inversion of Radon transform with Poisson noise)

[Muller et al 2013]
Standard EM

20min data
(low noise)

Standard EM

5s data
(high noise)
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Variants of total variation

L : : : : . 18
TV regularization suffers from staircasing: piecewise smooth parts often reconstructed by stair-type structure

Example: denoising
K = embedding operatorto L2

[Rudin-Osher-Fatemi 1992]

501

(g) Noisy grayscale photo corrupted by  (h) Line profile of the noisy image and the
additive Gaussian noise (u = 0, 02 = 0.01). corresponding row in the noiseless image.

[PhD Brinkmann 2019]

L 1
300 400 500 600 0 800 900

(i) TV denoising result with a = 0.095. (j) Line plot of the reconstructed image com-
DESy pared against the noisy and the noiseless im-
' age.




Variants of total variation

TV regularization suffers from staircasing: piecewise smooth parts often reconstructed by stalr-%ype structure

Improved versions by infimal convolution [Chambolle-Lions 1997]

J(u)= inf (lu1|gy + |Vu2|sy)

Ul tuU2=u

or total general variation [Bredies-Kunisch-Pock 2010]

Ju) = inf
(w) = iof_ (lsv +|uzlsv)

Various other generalizations to higher-dimensional (spectral) and time-dependent images

rm\"m I
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Model based regularizations

Total variation and related regularization

Optimality (source condition) V-g=K"w
g corresponds to (generalized) normal vector field on level lines (surfaces)
Divergence of g corresponds to mean curvature

Hence, total variation allows nonsmooth solutions, but smoothes discontinuity sets

Problem: modelling very indirect

Prior itself not informative, but only structure of

(a) Test image (ground truth) (b) Test image corrupted by additive Gaussian
.. . o oo 2 _ ¢
minimizers \ = - = woise (4 = 0, 0% = 0.29)
—n =63 n=63
Al —n=255 | —n =255
A n=1023 n=1023
7 ] n =4095 n = 4095
n = 16383 n = 16383
‘ n = 65535 n = 65535
|
. |
Bayesian models for
. |
UQ questionable | |
)i \ ‘ (¢) Anisotropic TV denoising result (a = 10) (d) Isotropic TV denoising result (o = 10)
P RA——rA e 0 !
1] 13 213 10 1/3 213 1
(a) CM (b) MAP

DESY. | The mathematics of image reconstruction | Martin Burger, 24.8.2023 Page 20



Blas
L L : 21
Variational egularization suffers from strong bias

In total variation regularization bias = loss of contrast

[Meyer 2002]

[PhD Brinkmann 2019]

(a) Test image “three circles of equal size”.  (b) Test image “three circles of equal in-
The pink line corresponds to the line pro-  tensity”. The pink line corresponds to the

files below. line profiles below.

" |—original image
recon alpha =1
recon alpha = 10 1
***** econ alpha = 35 T S []
recon alpha = 100

""NI

e e T e == e H ]

(c) Line profiles of ROF reconstructions  (d) Line profiles of ROF reconstructions

for the above image for several values of « for the above image for several values of « HIEI\II.III\\AgI(l)‘lL(;Z
DESY compared against the original (pink). compared against the original (pink).
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Bias correction

. 22
Unfortunately local loss of contrast = missing structures
Example: denoising
clean noisy u f-u
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Bregman Iteration

Approximation with penalty 23
. 1 5 . )
minimize F(Ku, f) + — (J(u) — J(4) — (p,u — u))
T
Can be done in multiple steps: Bregman iteration [Bregman 1967] [Hestenes 1969, Powell 1969] [Osher-mb-
Goldfarb-Xu-Yin 2005]
k+1 : 1 k k k
u" T € argmin F(Ku, f) + — ( J(u) — J(u”) — (", u — u”™)
U T
Optimality condition = dual update
k+1 _ k * k+1
pt=p" +7KTOF (Ku"", f) 2
o . . | | H
Bayesian interpretation: recenter prior around last reconstruction (Gauss: shift of mean) HELkiiGiTE
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PET Reconstruction

: : : 24
Increasing Bregman iterations

m A 0.05120B 0.raw Interpolation ~ Coarseness: 1.0 « X
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Model based regularizations

20 min data, EM reconstruction 5s data, Bregman-TGV regularization
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Model based regularizations

Sparsity regularization

ldea from compressed sensing: choose simple solution (minimal combinations), relax to 11
[Donoho 2006, Candes-Tao 2006]

Analysis formulation: for some frame system choose
J(u) = [(u, )]
?

Synthesis formulation (equivalent in case of orthonormal basis)

J(1) = Z ;| where u = Z i P;

Observations (blurred image) Super-resolution result) 2

r\vﬂ I
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DESY.

Bregman iteration, Inverse Scale Space Flow

Bregman lteration

p" Tt =p" + T KOF (Ku*, f)

Can also be interpreted as implicit Euler discretization with time step t

27

Limit is rather degenerate evolution equation, inverse scale space flow

Op=—K"0F(Ku, f), pé€adJ(u)

[mb-Gilboa-Osher-Xu 2006, mb-Frick-Osher-Scherzer 2007, Brune-Sawatzky-mb 2011,mb-Moller-Benning-
Osher 2012]

B [eration 100
N [teration 20
600 Iteration 10
400 Iteration 0

200
—=1—]=

800

Recent development: stochastic linearized
Bregman methods for training sparse deep
neural networks [Bungert-Roith-Tenbrinck-mb 2021]

Number of Neurons



Dynamic Imaging: motion

Motion-corrected reconstruction,
hyperelastic energy / fluid models for deformation F

S Wﬂuh’b m

Transverse Coronal Sagittal

ppen-  Holz- Holz-
: apflelstr.  kirchner Bf.

bl Thasssiemwediacs

Conventional cell phone image from driving 18FDG Cardiac PET, correction of heart and breathing i #ofgs
subway wagon (H. Dirks) H aa
Burger-Dirks-Schonlieb 2018, Burger-Dirks-Frerking-Hauptmann-
Helin-Siltanen 2017, Mannweiler Phd 2018 HELMHOLTZ

IMAGING

DESY



Regularization and Physics: Motion-Corrected
Reconstruction

Measurement of sampled projections at different time steps, motion in between
Simple case: same projection and same noise statistics at each time step (discrete or continuous time)
Lagrangian: transformation operators

T(v)u = u(v) det Vo

Eulerian: transformation operators by solving continuity equation

Ou+ V- (vu) =0

r\“ﬂ I
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Regularization and Physics: Motion-Corrected
Reconstruction

Model in abstract framework: minimize

N N
J(u,v) = z D (KT (ve)u, fr) + aR(u) + Z Be.S (vy)
t=0 t—1

Motion Correction

PET motion phantom Wilhelm
(University hospital miunster) -

rm\"n I
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Regularization and Physics: Motion-Corrected
Reconstruction

1100

Ground Truth - {90 Best EM - {160

1140
1120
100
80
60
40

20

1110

Motion correction TV . J100

190

1120

Bregman TV

1100
t {80
+ 480 -
. . 160
60
i 50
40
40
30

20 20
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Computational Uncertainty
Quantification

Noisy image

Modelling, development
of efficient computational
sampling

ROF model MAP

Here: Primal Dual Sampling,
Lorenz Kuger

L-TV MAP kNt B4 s
,’ S R v“"” : ! %

[,-TV MMSE &

[,-TV post. std. . . .
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Uncertainty quantification

Sampling from the posterior

To evaluate variances, confidence intervals, posterior mean etc sampling schemes are needed

) Gaussian likelihood (b) Prior: p(u) o< exp(—A|uly) c) Resulting posterior

Classical Monte Carlo: Metropolis-Hastings, Gibbs can become
inefficient for large-scale problems

Alternative: Langevin sampling and similar algorithms
(modifying optimization by noise)

Remaining difficulty: modelling very indirect. Prior itself eventually not informative, but only structure of
minimizers

Bayesian models for UQ questionable. Can better priors be learned ?

n= n=
——n=255 | —n=255
P =y n=1023 n=1023

n =4095 n =4095
n=16383 n=16383
n = 65535 n = 65535

rl

H
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(a) p(u) x exp (—% [u|3) (b) p(u) o< exp (—|ul1) Page 33

0 73 23 10 13 23 1
(a) CM (b) MAP

DESY.



Learning in Inverse Problems

Supervised learning

Obvious idea: supervised learning
Use data pairs for input-output related by
o =Ku-+n
Minimize risk with appropriate loss L over some neural network architecture

mgiﬂE(ujfa) (L(U,Ng(fg)) — E(u,y) (L(U7N9(Ku + V)))

Issues of supervised learning
* (Computational) complexity of the inverse problem

« Bad generalization (network for inversion needs huge Lipschitz constant)

« Missing pairs of input-output data l'“ I

HELMHOLTZ
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Learning in Image Reconstruction
Undersampled MRI

Undersampling in MRI does not suffer from these issues (partly also in CT):
« Lower complexity, since forward operator just Fourier transform, low noise

Isometry property of Fourier transform leads to low Lipschitz constant of inverse

Data pairs from existing fully sampled measurements and reconstructions

normal DNN-based Reconstruction

Philips & LUMC holykspace AM Almsterdam
Ground truth Avg rank: 1.286 Avg rank: 2.571 Avg rank: 3.000 Avg rank: 3.143 FiGS refareiice

Zero-filled Reconstruction

Radmanesh Radiology Al 2022

HELMHOLTZ
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Learning in Image Reconstruction
Undersampled MRI

Majority of results convincing

But possible hallucinations
on few data sets

Not recognizable by
experienced radiologists

Ground truth

(courtesy Florian Knoll, Erlangen)

rwn I

Reconstruction

Muckley TMI 2021

~
DESY. | The mathematics of image reconstruction | Martin Burger, e
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Further issues Iin supervised learning

,oemi-Supervised learning*

Paradigm: still solve

U € argmgn (F(Ku, ) + aJ(u))

but with regularizer J (and possibly regularization parameter) learned from a database of images
(and possibly unrelated noisy data

Bayesian interpretation: directly learn prior, form posterior with forward model
Examples

« Adversarial regularizations

* Plug and play priors: trained by denoising on images solely

« Score-based diffusion models: transform prior into Gaussian, construct biased Langevin sampling l-m I
to go back to approximate sampling of posterior

HELMHOLTZ
IMAGING
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Further issues Iin supervised learning

Adversarial regularizers

Example: adversarial learning [Lunz-Oktem-Schénlieb 18]

Given favourable images {ui};—; and unfavourable ones{vi}i-,
minimize (with respect to parameters)

% Z J(us) = % Z J(vg) + AE[(IVJ]| — 1)2]
=1 k=1

Learned regularization method is itself a random variable in terms of training data.
As n and m tend to infinity and under assumption of i.i.d. sampling from appropriate distributions
expect convergence to minimizer of deterministic population risk

Eu(J) = Ey(J) + AE[([ V]| — 1)3]
Detailed properties of regularizer and subsequent solutions of inverse problem remain unclear e

So far, functionals learned based on data sets, but independent of inverse problem (forward operator K). H _i

; e ; ; HELMHOLTZ
Unclear if training data could even be solution of inverse problem I AGING

Page 38

DESY.



Learned Regularizers

Adversarial regularization with source condition

Augment with penalty that ensures training data satisfy source condition [mb-Mukherjee-Schonlieb,
NeurlPS Workshop 2021]

S IR B () P Eu (| (K)~ 0.7 (u)]*)

1=1

Undersampled and noisy CT reconstruction (Mayo Clinic Low Dose dataset)

r«“'m I

(a) ground-truth (b) FBP: 21.19, 0.22 (c) TV:29.85,0.79  (h) ACR-SC:30.93,0.85 [N g gl
HELMHOLTZ

IMAGING
Page 39
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Learned Regularizers

Adversarial regularization with source condition

Best case comparison:
Supervised learning and methods
with less constraints superior

However, more interpretability
and robustness with source condition
constraint

DESY.

method PSNR (dB) SSIM # param. reconstruction time (ms)
FBP 21.284+0.13  0.20+£0.02 1 37.0+4.6
TV 30.31 +£0.52  0.78 +£0.01 1 28371.4 + 1281.5
Supervised methods

U-Net 34.50 +0.65 0.90 £0.01 7215233 444 +12.5
LPD 35.69 +0.60 0.91 £0.01 1138720 279.8 £12.8
Unsupervised methods

AR 33.84+0.63 0.86+0.01 19338465 22567.1 £ 309.7
ACR 31.556+0.54 0.85£0.01 606610 109952.4 4+ 497.8
ACR-SC 31.28+0.50 0.84 £0.01 590928 105232.1 & 378.5

(1) ground-truth

(m) LPD: 34.05, 0.89

() FBP: 21.59, 0.24

(n) AR: 32.14, 0.84

(k) TV:29.16, 0.77

(o) ACR: 30.14, 0.83

(1) U-net: 32.69, 0.87

(p) ACR-SC: 29.88, 0.8:



Learned Regularizers

Adversarial regularization with source condition

Additional advantage: interpretable method allows to use superior approaches developed for variational models

Example: Bregman Iteration for Bias Correction, iterative recentering of prior. Mean SSIM improvement > 10 %
'Bregman 1967] [Hestenes 1969, Powell 1969] [Osher-mb-Goldfarb-Xu-Yin 2005]

1
T € argmin F(Ku, f) + — (J(u) — J(u®) — (pF,u— uk>)
(7 T
pFtt = p* + T K*OF (KuMt, f)

ACR-SC (GD) ACR-SC (Bregman) ACR-SC (GD) ACR-SC (Bregman)

,

ACR-SC (Bregman)

ACR-SC (GD) ACR-SC (Bregman)

14
-
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Learning in Image Reconstruction
State of the Art

Common approach:

« Use appropriate neural network for data at fixed resolution

« Use appropriate, often synthetic data set to train

« Display results and compare with reconstruction method that do not use any training data

* Find out that learning surpringly leads results that look better

Few approaches to provide theoretical insights, often in finite dimension or with assumptions that make the
original image reconstruction problem well-posed

Deep neural networks can stably solve high-dimensional, noisy,

Deep Learning for Trivial Inverse Problems non-linear inverse problems Learned reconstruction methods with

wverfasst von : Peter Maass - H o P * Shili e 5, ant
Andrés Felipe Lerma Pineda Philipp Christian Petersen Convergence guarantees
Ers: in: C ) d Sensing and Its Applications
Ver iblishing Subhadip Mukherjee*!, Andreas Hauptmann*®#, Ozan Oktem?, Marcelo Pereyra®, and
Carola-Bibiane Schénlieb'
10P Publishing
ioverse Probiems 38 (202

Learning the optimal Tikhonov regularizer for inverse problems

HELMHOLTZ
IMAGING

UEDTY. Clemens Arndt" Pag € 42

. . I . . 5 . . Regularization theory of the analytic
Giovanni S. Alberti!, Ernesto De Vito!, Matti Lassas?, Luca Ratti!, Matteo Santacesaria® deep prior approach




Learning in Image Reconstruction

Open issues

« How do learned methods behave in the infinite-dimensional limit ?

Do learned methods provide regularization with respect to data noise ? (Guarantees in certain metrics)
 How do typical solutions of a learned regularization method look like ? (Smoothness, bias, ..)

« What is the impact of the specific training approach

« Generalization aspect: do we obtain a convergent regularization method with high probability when
trained on finite data ?

rx\"n I
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http://www.helmholtz-imaging.de/

