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Image Reconstruction
The underestimated part of imaging

Images (Videos) and their manipulation are part of our daily life

First step of image formation often underestimated, although often the 

enabling part, cf. CT = Computed Tomography

Information / quality loss in image formation / reconstruction can hardly 

be recovered later 

Strong demand on methods for reconstruction and uncertainty 

quantification in many application fields, from nano to macro
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Emission Tomography
Active / Passive

Idea: detect photons emitted e.g. from radioactive

decay, with some kind of directional information

• Coincidence based (e.g. PET)

• Collimator based (e.g. SPECT)

• Energy based (Compton effect)

• …
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Image reconstruction from synchrotron x-ray sources
Ptychographic / Holographic Tomography

Wittwer et al 2023
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Image reconstruction across scales and planets
From nano to macro, from intracellular to outer space

STED Deconvolution of Bead Crystal Structure (with Hell 

Lab, Göttingen)

Deconvolution in Astronomy

Donath et al 2022

4Pi Deconvolution of

Syntaxin PC12  (with

Hell Lab, Göttingen)

18FDG-PET Reconstruction from short time data

(with Nuclear Medicine, Münster) 

Bregman-EM-GTVStandard

PET-MR, Rasch-Brinkmann-Burger 2017

Energy Efficient THZ Imaging on Mars,

with DLR Berlin
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Modern image reconstruction

noise

Core forward 

model

(main physics of 

the image 

formation)

Prior knowledge 

(structural / data-driven)

Additional physics of the

image (e.g. motion)

sampling
Prior 

degradation

Model errors correction, 

uncertainties

Model based view
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Model based approaches
The classical way of image reconstruction

Formulation as an inverse problem

• Derive physical model of(idealized) forward operator mapping from image to data

• Derive statistical model of noise (e.g. Poisson distribution for photon counts)

• Derive mathematical model of favourable images and structures (e.g. sparsity)

• Possibly add uncertainties 

Condensed in Bayesian posterior model

Likelihood (from u to f) includes forward and noise model, prior includes model of favourable images 
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Model based variational methods
Point estimates

Bayesian MAP estimate

Related to variational regularization method

Simplest case: Gaussian likelihood / prior = quadratic functional = linear equation

Forward operator K, data fidelity F, regularization functional J

Forward operator: physics (examples: convolution, Radon transform, wave propagation, …)

Data fidelity: stochastics (examples: additive Gaussian noise, Poisson distribution, …)

Regularization: art ?  How to translate structural properties into a functional ?



DESY. Page 9

Model based variational methods
Improving forward models

Example: PET

Radon + photon count Radon + photon + Radon + photon +

noise scattering scattering + attenuation
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Model based variational methods
Improving noise models

Example: PET

Right noise model

No regularization

Right noise model

Post smoothing

Wrong noise model

TV regularization
Approx. noise model

TV regularization

Right noise model

TV regularization

Cardiac 15H2O PET: Sawatzky, Brune, Müller, Burger 2009
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Variational Models
The role of regularization

Recall variational model

Optimality condition

Every solution satisfies the source condition (range condition)

This is an abstract smoothness condition, determines essentially which solutions are preferred / artefacts
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Folklore of Reconstruction
Use no / minimal prior knowledge

Every reconstruction method uses some prior knowledge, but often it is hidden

Example: fixed point iteration for                      / gradient method for least squares

Compute 

And

Inductively we see 
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Model based regularizations
Images with sharp edges

Basic idea from denoising: want to smooth out random noise – local averaging

Simplest idea: Dirichlet energy - quadratic gradient regularization (Gaussian prior)

Leads to oversmoothing – no sharp edges

Regularity theory works against us: take

Optimality condition yields

Regularity at least                        does not allow sharp edges
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Model based regularizations
Images with sharp edges

Alternative idea: p-Laplacian energy

Similar regularity for p > 1 

Limit: total variation

Optimality condition 

Various extensions to cure bias (Bregman iterations) and to avoid staircasing (total generalized variation) 
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Model based regularizations
TV models on sparse angle tomography

Only 50 angles between -90 and 90 degrees measured (Göppel et al 2023)
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Choice of regularization

Source condition

Note that g corresponds to (generalized) normal vector field on level sets (discontinuity sets) of u, its divergence

equals mean curvature

Consequence: solutions of TV regularization can

be discontinuous, but have nice discontinuity sets

(smooth curvature)

Similar for sparsity and other one-

homogeneous regularizations
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Total Variation Regularization

Example: PET reconstruction (inversion of Radon transform with Poisson noise)

[Müller et al 2013]

20min data

(low noise) (EM)

5s data TV

(high noise)

Standard EM

Standard EM TV
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Variants of total variation

TV regularization suffers from staircasing: piecewise smooth parts often reconstructed by stair-type structure

Example: denoising

K = embedding operatorto L2

[Rudin-Osher-Fatemi 1992] 

[PhD Brinkmann 2019]
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Variants of total variation

TV regularization suffers from staircasing: piecewise smooth parts often reconstructed by stair-type structure

Improved versions by infimal convolution [Chambolle-Lions 1997]

or total general variation [Bredies-Kunisch-Pock 2010]

Various other generalizations to higher-dimensional (spectral) and time-dependent images
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Model based regularizations
Total variation and related regularization

Optimality (source condition) 

g corresponds to (generalized) normal vector field on level lines (surfaces)

Divergence of g corresponds to mean curvature

Hence, total variation allows nonsmooth solutions, but smoothes discontinuity sets  

Problem: modelling very indirect  

Prior itself not informative, but only structure of 

minimizers 

Bayesian models for 

UQ questionable

| The mathematics of image reconstruction | Martin Burger, 24.8.2023
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Bias

Variational egularization suffers from strong bias

In total variation regularization bias = loss of contrast

[Meyer 2002] 

[PhD Brinkmann 2019]
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Bias correction

Unfortunately local loss of contrast = missing structures

Example: denoising

clean noisy u f-u
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Bregman iteration

Approximation with penalty

Can be done in multiple steps: Bregman iteration [Bregman 1967] [Hestenes 1969, Powell 1969] [Osher-mb-

Goldfarb-Xu-Yin 2005]

Optimality condition = dual update

Bayesian interpretation: recenter prior around last reconstruction (Gauss: shift of mean)
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PET Reconstruction

Increasing Bregman iterations
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Model based regularizations
Cardiac PET Reconstructios

20 min data, EM reconstruction 5s data, Bregman-TGV regularization
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Model based regularizations
Sparsity regularization

Idea from compressed sensing: choose simple solution (minimal combinations), relax to l1
[Donoho 2006, Candes-Tao 2006]

Analysis formulation: for some frame system choose

Synthesis formulation (equivalent in case of orthonormal basis)
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Bregman iteration, Inverse Scale Space Flow

Bregman Iteration

Can also be interpreted as implicit Euler discretization with time step t

Limit is rather degenerate evolution equation, inverse scale space flow

[mb-Gilboa-Osher-Xu 2006, mb-Frick-Osher-Scherzer 2007, Brune-Sawatzky-mb 2011,mb-Möller-Benning-

Osher 2012]

Recent development: stochastic linearized

Bregman methods for training sparse deep

neural networks [Bungert-Roith-Tenbrinck-mb 2021]
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Conventional cell phone image from driving

subway wagon (H. Dirks) 

28

Motion-corrected reconstruction,

hyperelastic energy / fluid models for deformation

Burger-Dirks-Schönlieb 2018, Burger-Dirks-Frerking-Hauptmann-
Helin-Siltanen 2017, Mannweiler Phd 2018

Dynamic Imaging: motion

18FDG Cardiac PET, correction of heart and breathing motion

Video Frame MC superresolution

Transverse Coronal Sagittal

Additional physics into regularization



DESY. Page 29

Regularization and Physics: Motion-Corrected

Reconstruction

Measurement of sampled projections at different time steps, motion in between

Simple case: same projection and same noise statistics at each time step (discrete or continuous time)

Lagrangian: transformation operators

Eulerian: transformation operators by solving continuity equation
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Model in abstract framework: minimize

L is forward operator, e.g. sampling from Radon transform

PET motion phantom Wilhelm

(University hospital münster)

Regularization and Physics: Motion-Corrected

Reconstruction

Standard EM Motion Correction
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Regularization and Physics: Motion-Corrected

Reconstruction

Ground Truth Best EM

Bregman TV Motion correction TV
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Computational Uncertainty
Quantification

Modelling, development

of efficient computational

sampling

Here: Primal Dual Sampling, 

Lorenz Kuger
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Uncertainty quantification
Sampling from the posterior

To evaluate variances, confidence intervals, posterior mean etc sampling schemes are needed

Classical Monte Carlo: Metropolis-Hastings, Gibbs can become

inefficient for large-scale problems

Alternative: Langevin sampling and similar algorithms 

(modifying optimization by noise) 

Remaining difficulty: modelling very indirect. Prior itself eventually not informative, but only structure of 

minimizers 

Bayesian models for UQ questionable. Can better priors be learned ?
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Learning in Inverse Problems
Supervised learning

Obvious idea: supervised learning 

Use data pairs for input-output related by

Minimize risk with appropriate loss L over some neural network architecture 

Issues of supervised learning

• (Computational) complexity of the inverse problem

• Bad generalization (network for inversion needs huge Lipschitz constant)

• Missing pairs of input-output data
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Learning in Image Reconstruction
Undersampled MRI

Undersampling in MRI does not suffer from these issues (partly also in CT):

• Lower complexity, since forward operator just Fourier transform, low noise

• Isometry property of Fourier transform leads to low Lipschitz constant of inverse

• Data pairs from existing fully sampled measurements and reconstructions

Radmanesh Radiology AI 2022 Knoll MRM 2019 / 2020 (fast MRI challenge)
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Learning in Image Reconstruction
Undersampled MRI

Majority of results convincing

But possible hallucinations

on few data sets

Not recognizable by 

experienced radiologists

(courtesy Florian Knoll, Erlangen)

Muckley TMI 2021

| The mathematics of image reconstruction | Martin Burger, 24.8.2023
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Further issues in supervised learning
„Semi-Supervised learning“

Paradigm: still solve

but with regularizer J (and possibly regularization parameter) learned from a database of images

(and possibly unrelated noisy data

Bayesian interpretation: directly learn prior, form posterior with forward model

Examples

• Adversarial regularizations

• Plug and play priors: trained by denoising on images solely

• Score-based diffusion models: transform prior into Gaussian, construct biased Langevin sampling 

to go back to approximate sampling of posterior



DESY. Page 38

Further issues in supervised learning
Adversarial regularizers

Learned regularization method is itself a random variable in terms of training data. 

As n and m tend to infinity and under assumption of i.i.d. sampling from appropriate distributions

expect convergence to minimizer of deterministic population risk

Detailed properties of regularizer and subsequent solutions of inverse problem remain unclear

So far, functionals learned based on data sets, but independent of inverse problem (forward operator K). 

Unclear if training data could even be solution of inverse problem

Example: adversarial learning [Lunz-Öktem-Schönlieb 18]

Given favourable images and unfavourable ones

minimize (with respect to parameters)
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Learned Regularizers
Adversarial regularization with source condition

Augment with penalty that ensures training data satisfy source condition [mb-Mukherjee-Schönlieb, 

NeurIPS Workshop 2021]

Undersampled and noisy CT reconstruction (Mayo Clinic Low Dose dataset)
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Learned Regularizers
Adversarial regularization with source condition

Best case comparison: 

Supervised learning and methods

with less constraints superior

However, more interpretability

and robustness with source condition

constraint
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Learned Regularizers
Adversarial regularization with source condition

Additional advantage: interpretable method allows to use superior approaches developed for variational models

Example: Bregman Iteration for Bias Correction, iterative recentering of prior. Mean SSIM improvement > 10 %

[Bregman 1967] [Hestenes 1969, Powell 1969] [Osher-mb-Goldfarb-Xu-Yin 2005]
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Learning in Image Reconstruction
State of the Art

Common approach:

• Use appropriate neural network for data at fixed resolution

• Use appropriate, often synthetic data set to train 

• Display results and compare with reconstruction method that do not use any training data 

• Find out that learning surpringly leads results that look better

Few approaches to provide theoretical insights, often in finite dimension or with assumptions that make the

original image reconstruction problem well-posed
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Learning in Image Reconstruction
Open issues

• How do learned methods behave in the infinite-dimensional limit ?

• Do learned methods provide regularization with respect to data noise ? (Guarantees in certain metrics)

• How do typical solutions of a learned regularization method look like ? (Smoothness, bias, ..)

• What is the impact of the specific training approach

• Generalization aspect: do we obtain a convergent regularization method with high probability when 

trained on finite data ?

• ….
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