
Containerizing HELIPORT

Development and Deployment with Docker
Marc Hanisch, <marc.hanisch@gfz-potsdam.de>

Helmholtz Zentrum Potsdam Deutsches GeoForschungsZentrum GFZ

HELIPORT Workshop, HZDR, 12.-14.06.2023

Containerizing HELIPORT – What to expect

 Motivation
 Short Docker Introduction
 HELIPORT Development Setup
 Hands On
 HELIPORT Deployment Setup
 Benefits
 Drawbacks

Containerizing HELIPORT – Motivation

 Fast and easy way to start HELIPORT development
 No software requirements (except Docker)

 Secure and automated deployment for production

Image by Jarosław Bialik

https://pixabay.com/photos/dock-container-export-cargo-441989/

A short Docker Introduction

 OS-level virtualization
 Docker uses Linux kernel to provide sandboxes / containers
 Processes are isolated from the host machine
 Fine grained control of assigning ressources, eg:

– File system access

– Network ports

– CPU usage

 Image: read only template to build containers
 Container: running instance of an image, encapsulated

environment
 Volume: mechanism for persisting data
 Getting started with Docker...

https://docs.docker.com/get-started/

HELIPORT Development Setup

 Each service used by HELIPORT has its own container:
– HELIPORT

– PostgreSQL

– RabbitMQ

– Celery Worker

– Celery Beat

– Webpack

 Required network services are mapped to the host
– HTTP via port 8000

– PostgreSQL via port 15432

 Direct file system access for individual containers

HELIPORT Development Setup

Hands on – Starting & Stopping

 Create .env file from docker/development/.env.dist
 Build and start services:

 ./docker-compose.sh up [-d]

 Open browser with http://localhost:8000
 docker-compose.sh script is a simple wrapper around docker-compose
 Inspect running containers:

 ./docker-compose.sh ps

 Stop and destroy services:

 ./docker-compose.sh down [--volumes]

http://localhost:8000/

Hands on – Running Commands

 Running:
 heliport-cli commands:

 ./docker-compose.sh exec heliport poetry run heliport-cli --help

– linters:
 ./docker-compose.sh exec heliport poetry run black --check .

 ./docker-compose.sh exec webpack yarn run lint

– tests:
 ./docker-compose.sh exec heliport poetry run heliport-cli test

 Getting into the Python shell
– ./docker-compose.sh exec heliport bash

$ poetry shell # interactive Poetry shell
(heliport-py3.11) $ heliport-cli shell # interactive Django shell
>>> from heliport.core.utils.colors import pick_color

Hands on – Working with the Database

 Connect to the database:
– ./docker-compose.sh exec postgres psql -U dev heliport

 Use any PostgreSQL compatible client via port 15432

Hands on – Getting information

 Viewing logs:

 ./docker-compose.sh logs [-f] heliport

 Inspecting processes:

 ./docker-compose.sh top heliport

HELIPORT Deployment Setup

 Again, each service in a separate container
 Webpack runs at HELIPORT image build process
 Nginx container in front of HELIPORT, handles SSL, GZIP etc.
 Only ports 80 and 443 are shared with host
 Persistent Docker volumes for database and application files
 At GFZ, automated deployment via GitLab CI:

– GitLab runner on codebase.helmholtz.cloud builds HELIPORT image
when branch is tagged

– Pushes HELIPORT image to GitLab registry

– GitLab runner on production host pulls all images

– Runs containers on production host

HELIPORT Deployment Setup

Benefits

 No dependencies to install (Python, poetry, PostgreSQL, RabbitMQ)

 No version conflicts with services on host machine
 Fine grained control of resources (file system access, network ports)

 Reliable & deterministic execution on systems supporting Docker
 Deployment setup can be tested on developer’s machine

Drawbacks

 Adds another level of complexity
 Docker setup must be maintained for updates of

 HELIPORT itself

 New base image versions

 New Docker versions

Thank you very much.

(° °) ͡� ͡�ʖ ͡�

	Containerizing HELIPORT
	Containerizing HELIPORT – What to expect
	Containerizing HELIPORT – Motivation
	A short Docker Introduction
	HELIPORT Development Setup
	HELIPORT Development Setup (2)
	Hands on – Starting & Stopping
	Hands on – Running Commands
	Hands on – Working with the Database
	Hands on – Getting information
	HELIPORT Deployment Setup
	HELIPORT Deployment Setup (2)
	Benefits
	Drawbacks
	Folie 15

