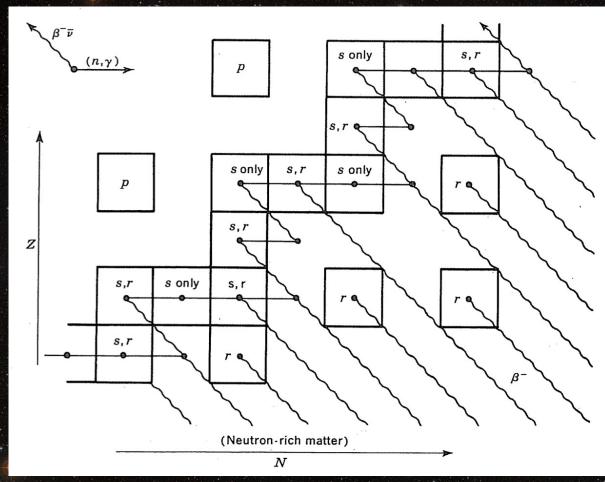
ChETEC-INFRA 3rd General Assembly and Transnational Access User Meeting

Debrecen, Jun 6-7, 2023

A new set of core-collapse supernovae models to study the γ-process nucleosynthesis

Lorenzo Roberti

Konkoly Observatory, CSFK, Budapest, Hungary



Transnational Access projects

 Project 22102724-ST: "A new set of core-collapse supernovae models to study the γ-process nucleosynthesis"

 Project 23103142-ST: "NuGIPi: a new stellar model pipeline for nuclear astrophysics impact studies"

The p-nuclei

Clayton, D.D. (1968) Principles of Stellar Evolution and Nucleosynthesis. University of Chicago Press, Chicago.

Lorenzo Roberti - lorenzo.roberti@csfk.org

2

The y-process nucleosynthesis

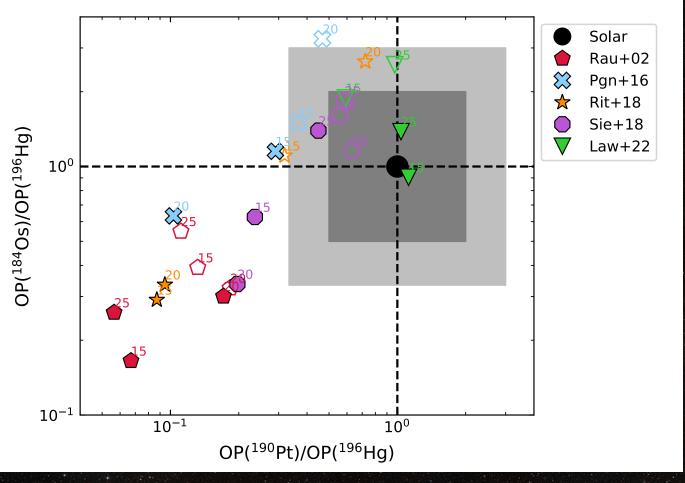
- Neutron-deficient nuclei (p-nuclei) are (mostly) produced through a sequence of photodisintegrations (γ,n), (γ,p), and (γ,α) in O/Ne rich layers in CCSN explosions from massive star progenitors (e.g., Woosley & Howard, 1978; Rayet et al., 1995);
- The typical γ-process yields from massive stars are underproduced by a factor of ~2-4 compared to the solar system abundances;
- ^{92,94}Mo and ^{96,98}Ru are underproduced by more than an order of magnitude compared to the other γ-process nuclei.

The y-process nucleosynthesis in CCSNe

Main goals of the project:

- Analysis of γ-process yields in 5 different existing sets of core-collapse supernova models (Rauscher+02, Pignatari+16, Sieverding+18, Ritter+18, Lawson+22);
- Update of the nuclear reaction rates for the γ-process nucleosynthesis (in collaboration with ATOMKI);
- Production of new γ-process stellar yields through the NuGrid post-processing codes.

The y-process nucleosynthesis in CCSNe


The γ -process nucleosynthesis in core-collapse supernovae

I. A novel analysis of γ -process yields in massive stars

L. Roberti^{1, 2, 3, 4}, M. Pignatari^{1, 2, 5, 4}, A. Psaltis^{6, 7, 4}, A. Sieverding⁸, P. Mohr⁹, Zs. Fülöp⁹, and M. Lugaro^{1, 2, 10, 11}

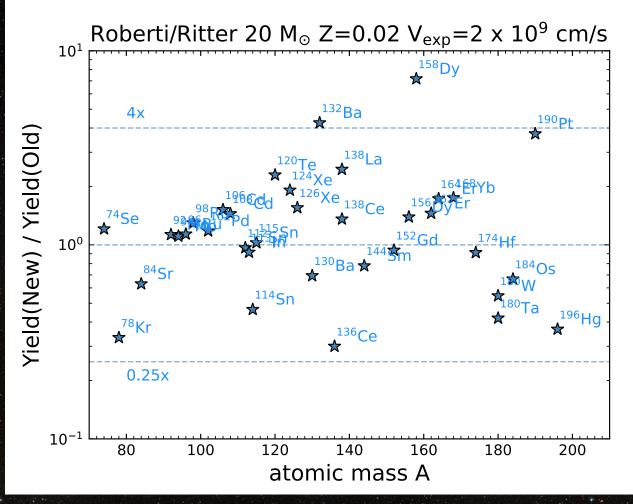
- ¹ Konkoly Observatory, Research Centre for Astronomy and Earth Sciences, Eötvös Loránd Research Network (ELKH), Konkoly Thege Miklós út 15-17, H-1121 Budapest, Hungary;
- ² CSFK, MTA Centre of Excellence, Budapest, Konkoly Thege Miklós út 15-17, H-1121, Hungary
- ³ INAF Osservatorio Astronomico di Roma Via Frascati 33, I-00040, Monteporzio Catone, Italy
- ⁴ NuGrid Collaboration, http://nugridstars.org
- ⁵ E. A. Milne Centre for Astrophysics, University of Hull, Hull HU6 7RX, UK
- ⁶ Department of Physics, North Carolina State University, Raleigh, NC, 27695, USA
- ⁷ Triangle Universities Nuclear Laboratory, Duke University, Durham, NC, 27710, USA
- ⁸ Max-Planck Institute for Astrophysics, Postfach 1317, 85741 Garching, Germany
- ⁹ Institute for Nuclear Research (ATOMKI), H-4001 Debrecen, Hungary
- ¹⁰ Eötvös Loránd University, Institute of Physics, Budapest 1117, Pázmány Péter sérány 1/A, Hungary
- ¹¹ School of Physics and Astronomy, Monash University, VIC 3800, Australia

The y-process nucleosynthesis in CCSNe

☆ = undecayed yields

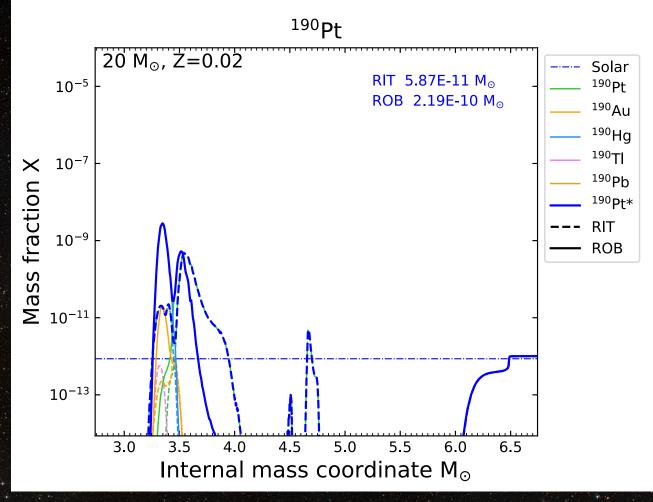
* = undecayed
yields +
radiogenic
contribution

· 07/06/2023

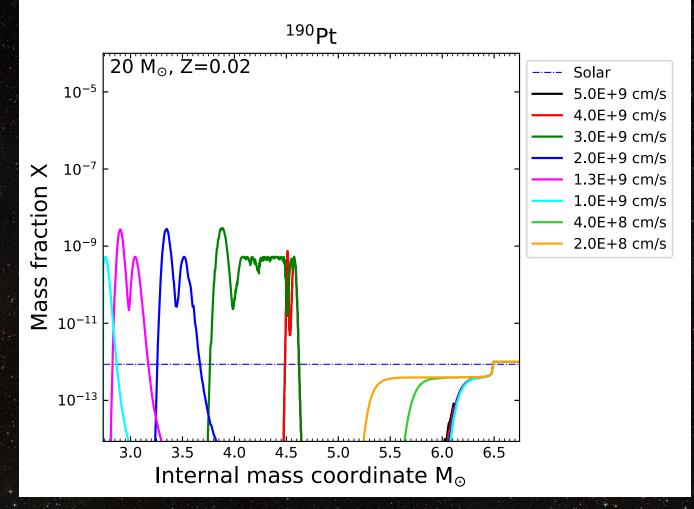

New y-process calculations in CCSNe

Starting from the same MESA progenitors by Ritter+18 we:

- Calculated the pre-supernova nucleosynthesis with JINA Reclib V2.2;
- Calculated a set of new core-collapse supernova simulations for each model and the associated explosive nucleosynthesis with the RDA + Fryer+12 remnant mass. We varied the initial velocity of the shock wave in the range $v_s = 2 \times 10^8 5 \times 10^9$ cm/s (Ritter reference: $v_s = 2 \times 10^9$ cm/s).


PRELIMINARY RESULTS! (Roberti+23, in prep.)

New γ-process calculations in CCSNe: Effect of the network


07/06/2023

New γ-process calculations in CCSNe: Effect of the network

07/06/2023

New γ-process calculations in CCSNe: Effect of the explosion energy

Summary

- The production of p-nuclei is still unclear, therefore we aim to explore in more detail the CCSN scenario;
- We analysed the γ-process nucleosynthesis in 5 existing different sets of CCSN models. We found large differences, mostly depending on the different sets of reaction rates used;
- We started looking into the effect of different reaction rate database and explosion energies. The different database can largely influence the production of p-nuclei, the variation of the explosion energy mostly results in a translation of the abundance peaks;
- Next steps: radionuclides (⁹²Nb, ^{97–98}Tc, ¹⁴⁶Sm), analysis of the nuclear network for the γ-process nucleosynthesis, production of new γ-process stellar yields.