Nucleosynthesis signatures in four hot subdwarfs

J. Krtička, I. Krtičková, J. Janík, S. Mereghetti, F. Pintore, P. Németh, J. Kubát, M. Vučković

Istituto di Astrofisica Spaziale e Fisica Cosmica Milano, Italy Astronomical Institute, Ondřejov, Czech Republic Universidad de Valparaíso, Valparaíso, Chile Masaryk University, Brno, Czech Republic

strewbdus ton

Typical structure of hot subdwarfs

 $\sim 0.47~M_{\odot}$ He core cloaked by tiny H layer

How to make a hot subdwarf?

- (e.g. due to binary interaction, Han et al. 2007) progenies of red giants stripped off envelope
- merger of two white dwarfs
 (Iben & Tutukov 1984, Saio & Jeffery 2000)
- helium flash on the white dwarf cooling track (Brown et al. 2001, Battich et al. 2018)

H and He dominated subdwarfs

 He abundance as a function of effective temperature (Németh 2016)

Analysis of four hot subdwarfs

- optical spectroscopy: UVES@UT2 (ESO, Paranal)
- UV spectroscopy: IUE

UV spectroscopy: FUSE

Analysis of four hot subdwarfs

- NLTE model atmospheres TLUSTY (Lanz & Hubeny 2007)
- spectrum synthesis code SYNSPEC (Lanz & Hubeny 2017)
- ⇒ fitting of observed spectra

sisylene

Two H dominated subdwarfs

HD 49798

very strong X-ray emission: 1.3×10^{32} erg s⁻¹ (Mereghetti et al. 2016)

BD+18° 2647

HD 49798: optical spectrum

⇒ effective temperature and surface gravity

BD+18° 2647 far-UV spectrum

Derived parameters

Parameter	HD 49798	BD+18° 2647
effective temperature T _{eff} [K]	45900 ± 800	73000 ± 2000
surface gravity log g	4.56 ± 0.08	5.95 ± 0.03
radius $R [R_{\odot}]$	1.05 ± 0.06	0.107 ± 0.011
mass <i>M</i> [<i>M</i> _☉]	$1.46 \pm 0.32^{*}$	0.38 ± 0.08
He abundance $\varepsilon_{He} = n_{He}/n_{He}$	0.74 ± 0.07	0.029 ± 0.010
mass-loss rate \dot{M} [M $_{\odot}$ yr $^{-1}$]	2.1×10^{-9}	$< 10^{-12}$
* $M = 1.41 \pm 0.02 \ M_{\odot}$ from X-r	ay orbital solution	no

besteninob H

(Rigoselli et al. 2023)

Derived parameters

Parameter	HD 497698	BD+18° 2647
effective temperature T _{eff} [K]	45 900 - 2800	73000 ± 2000
surface gravity log g	4 56 ± 5 08	5.95 ± 6.03
radius $R [R_{\odot}]$	1.05 ± 0.06	0.107 ±5.011
mass <i>M</i> [<i>M</i> _☉]	1.46 + 32*	0.38
He abundance $\varepsilon_{He} = n_{He}/n_{He}$	0.74 0.07	0.029 0.010
mass-loss rate \dot{M} [M_{\odot} yr $^{-1}$]	2.1 \$10^-9	$< 10^{-12}$
* $\mathcal{M}=$ 1.41 \pm 0.02 \mathcal{M}_{\odot} from X-ra	iy orbital solution	on
(Rigoselli et al. 2023)		

besteninob H

bestenimob H

Abundances & evolutionary history

Two He dominated subdwarfs

CD-46 8926

CD-51 11879

CD-46 8926: optical spectrum

CD-51 11879 UV spectrum

Derived parameters

 $62\,600\pm3000$ CD-46 8926 5.23 ± 0.20 $6.0 imes 10^{-10}$ 0.29 ± 0.05 0.52 ± 0.31 > 10 CD-51 11879 70500 ± 2000 4.97 ± 0.10 0.47 ± 0.20 0.37 ± 0.09 2.5×10^{-9} > 20 effective temperature T_{eff} [K] He abundance $\varepsilon_{He} = n_{He}/n_{H}$ mass-loss rate M [M $_{\odot}$ yr $^{-1}$] surface gravity log g [cgs] mass $M [M_{\odot}]$ radius R [R_{\odot}]

Abundances & evolutionary history

merger of He+He white dwarfs (Saio & Jeffery 2000) processed CNO 3α processed material: merger of hybrid CO-He and He white dwarfs (Justham at al. 2011)

Conclusions

- hot subdwarfs: stripped cores of helium burning stars
- abundances coming from nucleosynthesis trace evolutionary history

