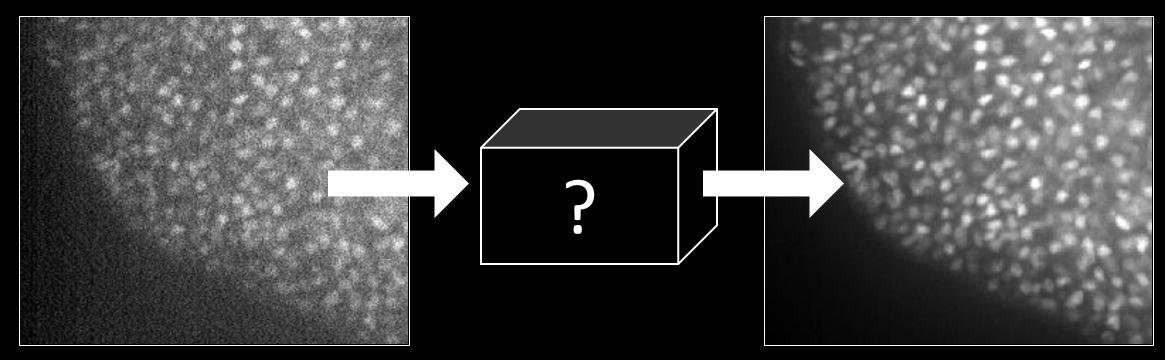


Noise and Denoising: Supervised, Self-Supervised and Unsupervised

Alexander Krull

The Problem of Noise



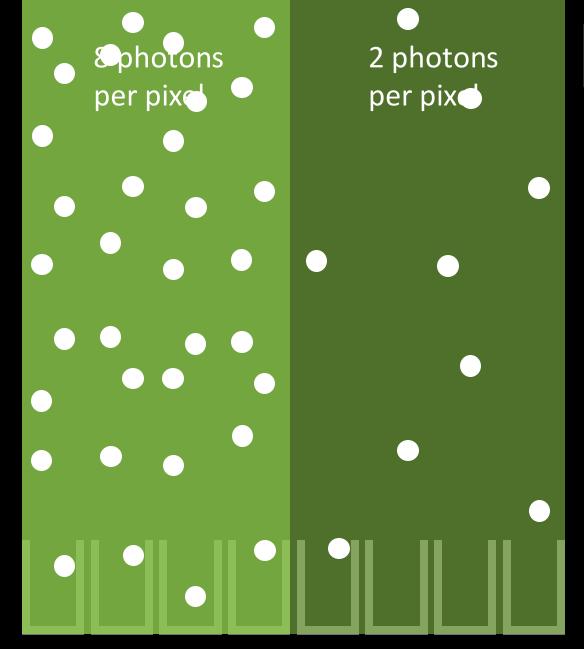
Low exposure:

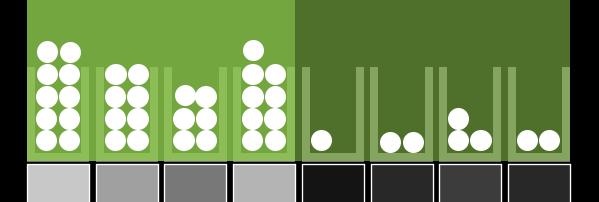
- Gentle 🙂
- Noisy 😕

High exposure:

- Damaging 😕
- Clean 🙂

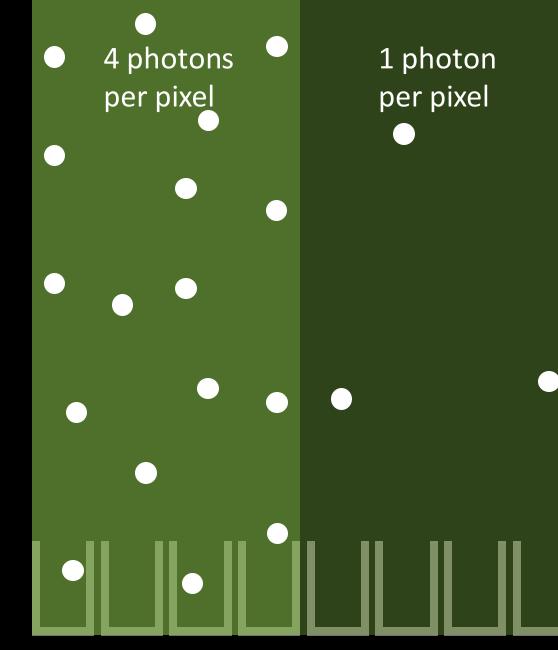
Why does Low Light Lead to Noisy Images?

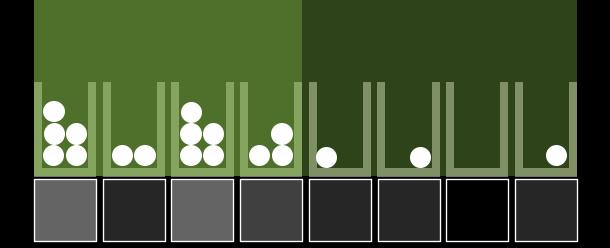




100% light

|--|

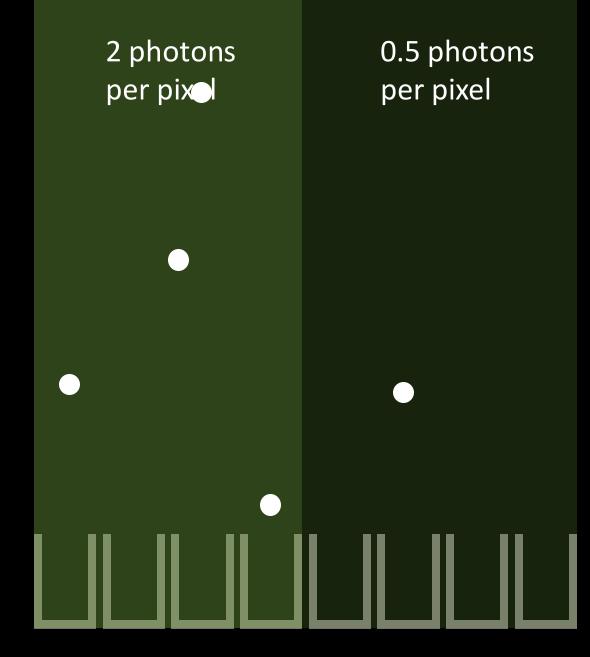




100% light

|--|--|--|--|--|--|--|--|--|

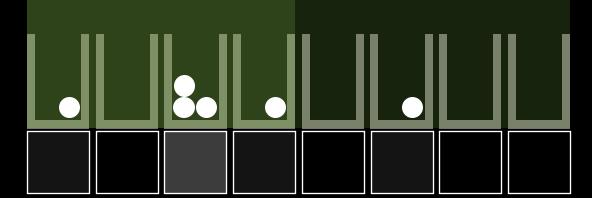
50% light x 2



100% light

_		_		

50% light x 2



100% light

50% light x 2

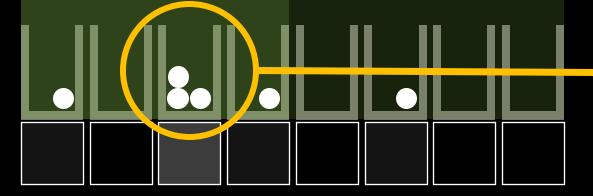
25% light x 4

100% light

50% light x 2

25% light x 4

How likely is it that we get 1, 2, 3, ... photons?



Poisson Shot Noise

i-1

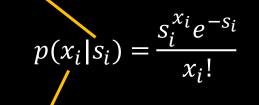
...

i+1

...

Counting independent events occurring at fixed rate.

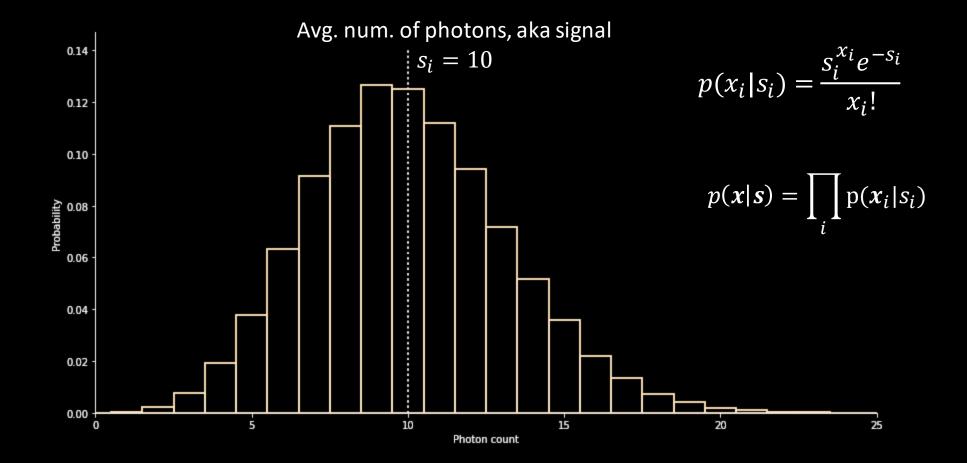
Light intensity avg. photons per exposure (signal)



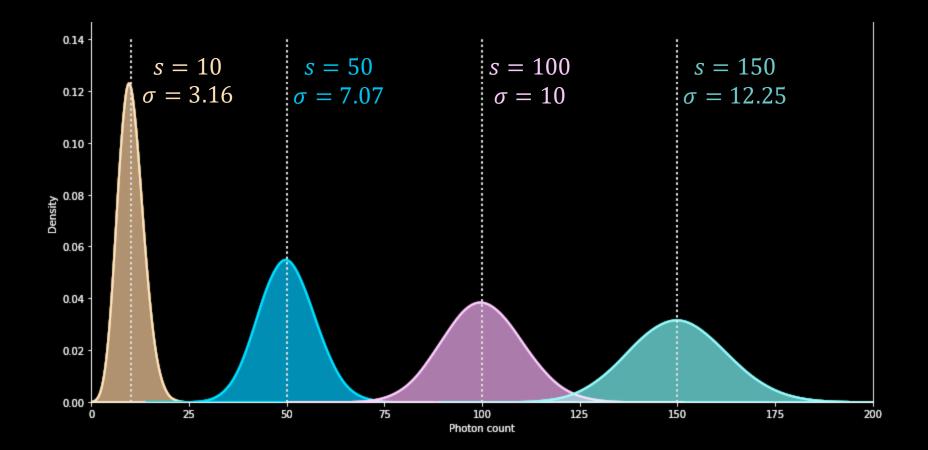
Photon count (noisy value)

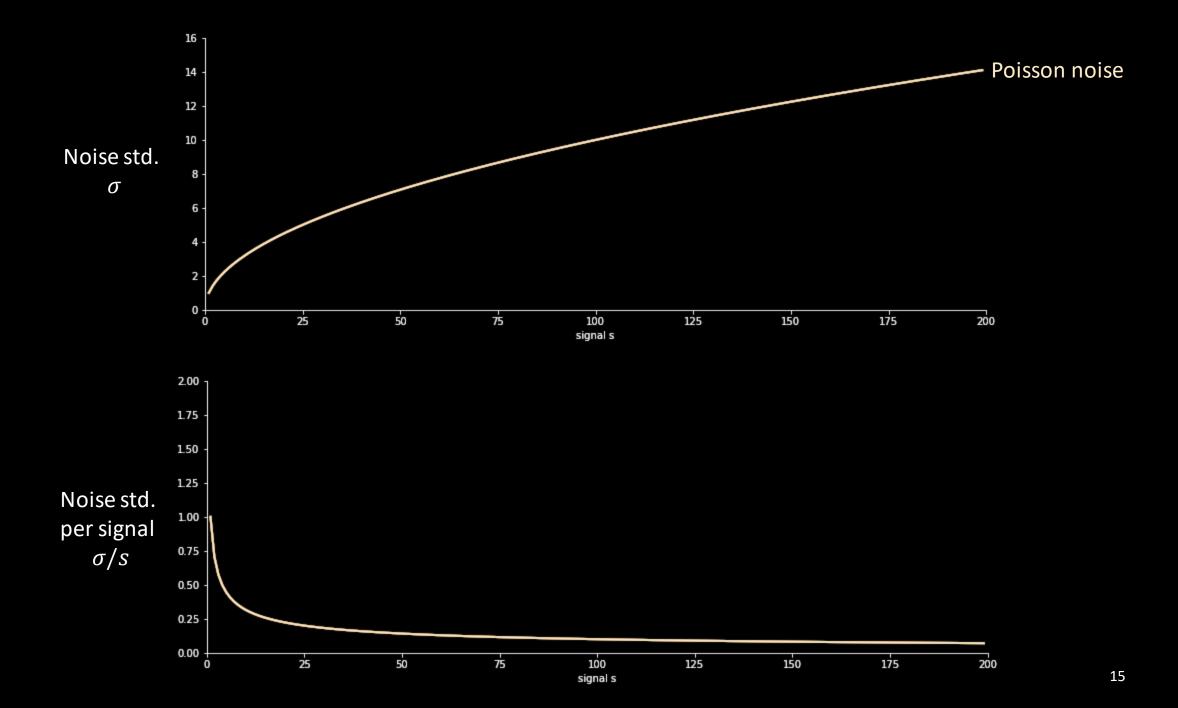
• How likely is it that we get 1, 2, 3, ... photons?

Poisson Shot Noise



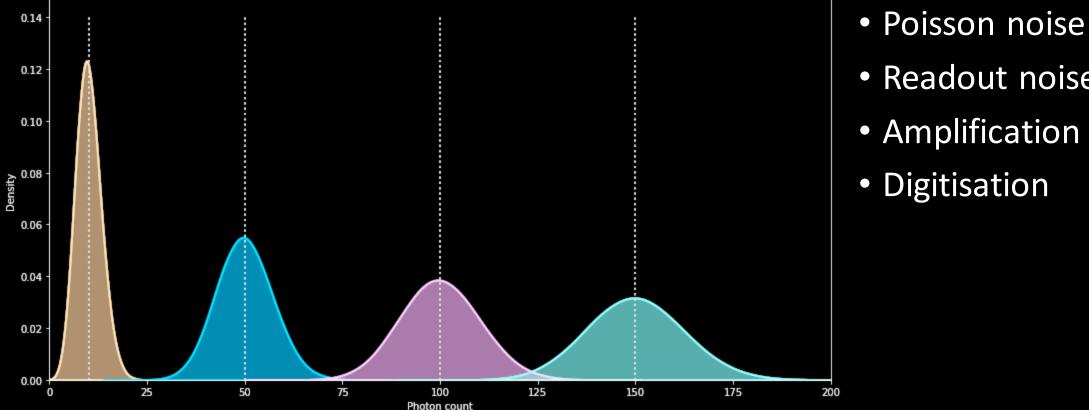
Poisson Shot Noise





Real Noise

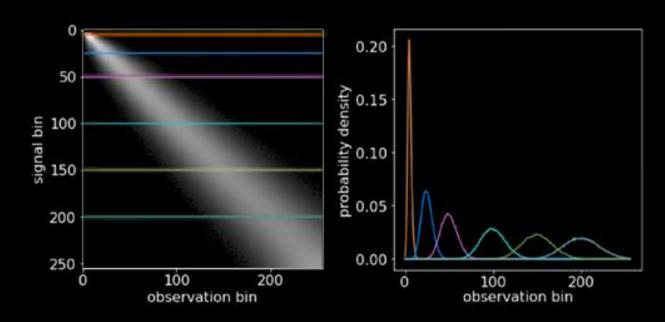
 $p(\boldsymbol{x}_i|s_i) = ?$



- Readout noise
- Amplification
- Digitisation

Recording a Pixel Noise Model

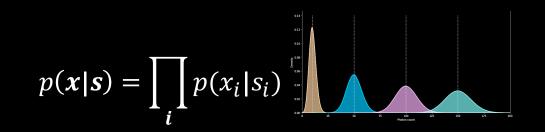
observation x_i signal s_i



- image static object approx. 100 times
- average result → pseudo ground truth
- build 2D histogram
- build parametric model, fit Gaussians

- row s_i corresponds to $p(x_i|s_i)$ Noise model is ...
- a collection of distributions.
- property of the camera/detector.
- independent of sample.

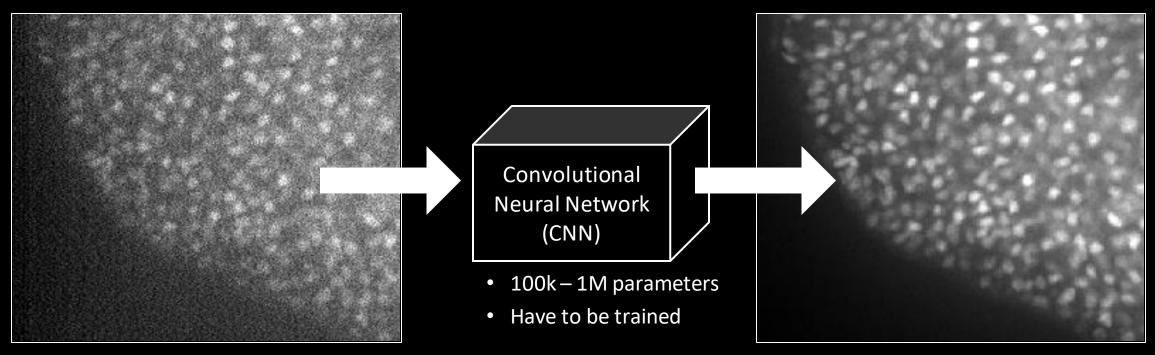
Image Noise Models



Traditional Supervised Training

You need clean data.

Deep Learning for Denoising



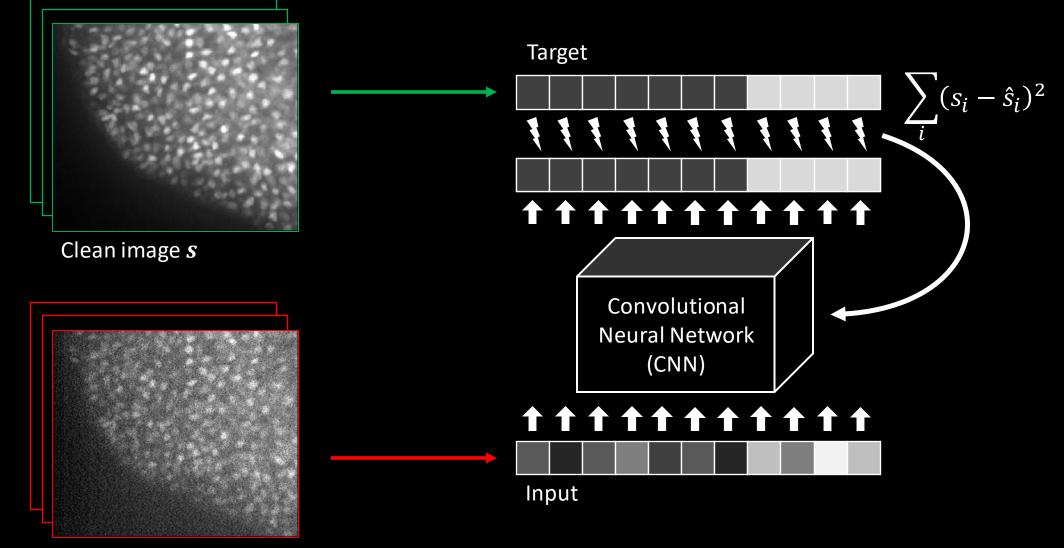
Low exposure:

- Low photo toxicity ⁽²⁾
- Low bleaching
- Noisy 😕

High exposure:

- Strong photo toxicity 😕
- Strong bleaching 😕
- Less noise 😊

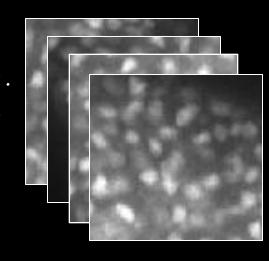
CARE – Traditional Supervised Training



Noisy image *x*

What is Going On?

The Distribution of Clean Images



Signal

p(s)The distr. of clean images

Image Generation Model

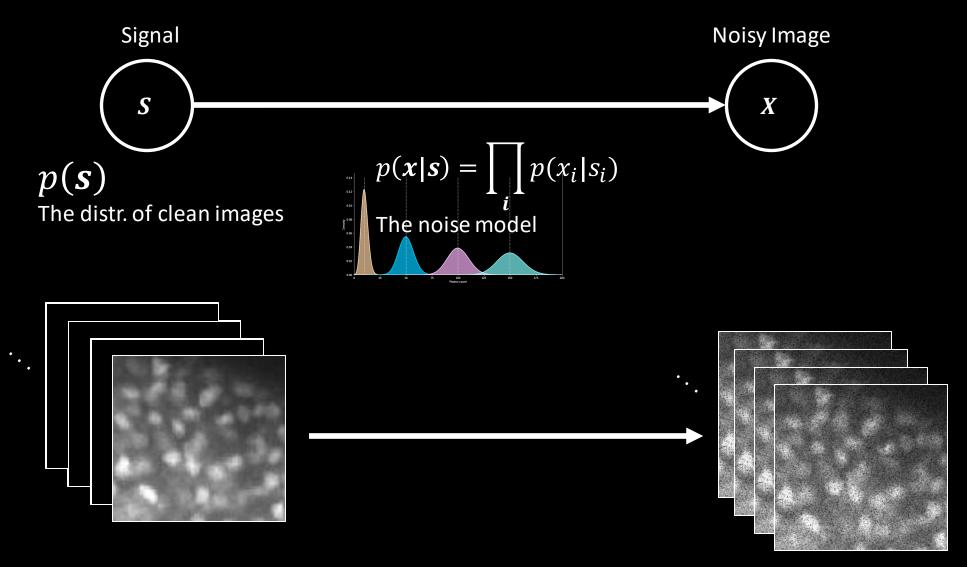
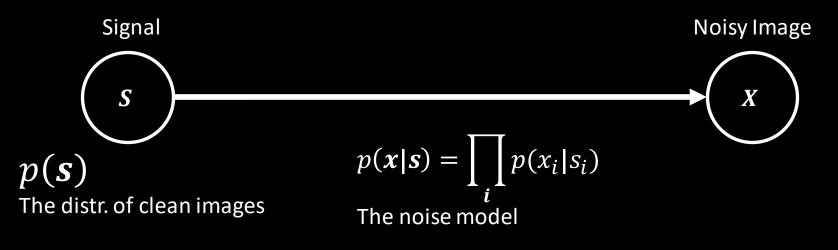


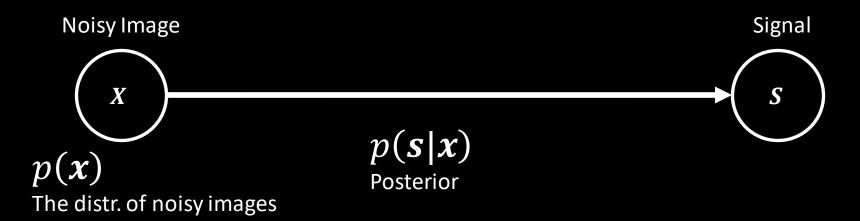
Image Generation Model



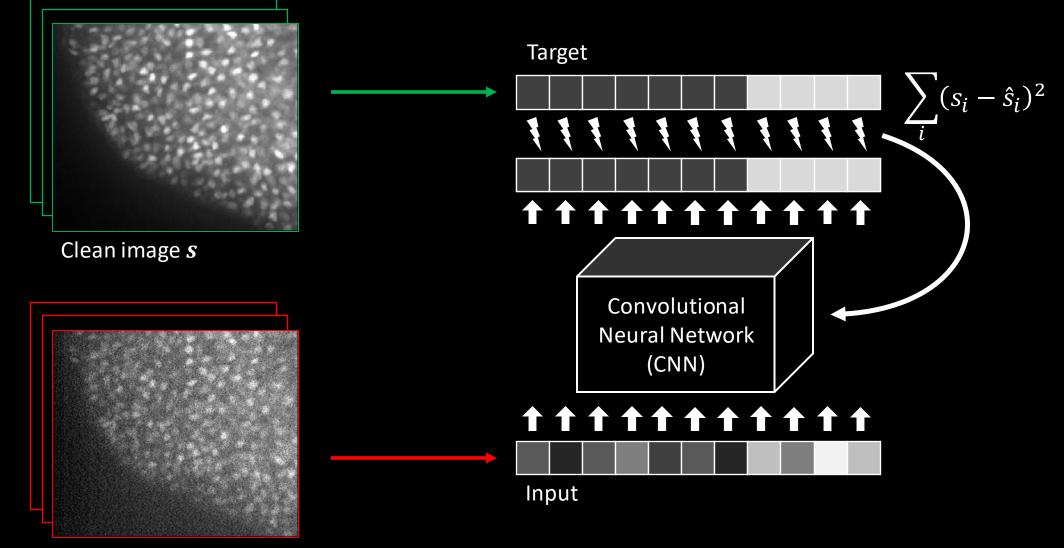
$$p(\boldsymbol{s}|\boldsymbol{x}) = \frac{p(\boldsymbol{x}|\boldsymbol{s})p(\boldsymbol{s})}{\int p(\boldsymbol{x}|\boldsymbol{s}')p(\boldsymbol{s}')\,d\boldsymbol{s}'}$$

Bayes' Theorem

The Denoising Problem



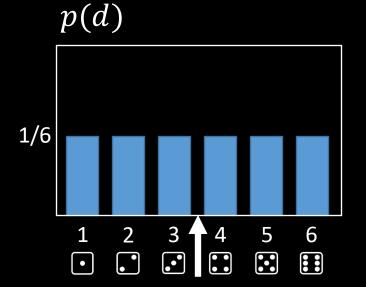
CARE – Traditional Supervised Training



Noisy image *x*

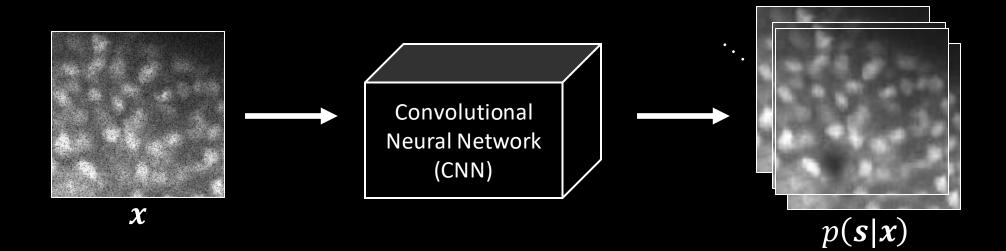
Minimising the Squared Error

Rolling a die:



Minimising
$$(d - \hat{d})^2 \longrightarrow \hat{d} \approx \mathbb{E}_{p(d)}[d]$$

Minimising the Squared Error

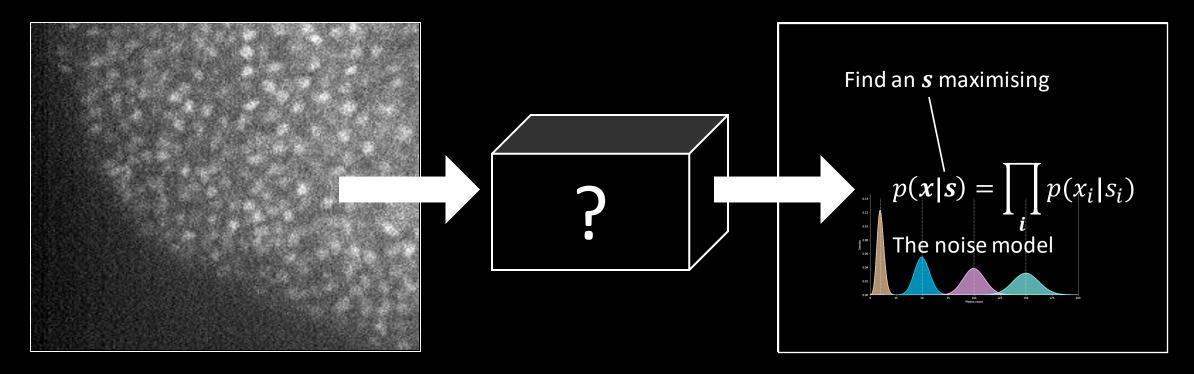


$$\text{Minimising } \sum_{i} (s_{i} - \hat{s}_{i})^{2} \longrightarrow \hat{s} \approx \mathbb{E}_{p(\boldsymbol{S}|\boldsymbol{X})}[\boldsymbol{s}]$$

$$p(\boldsymbol{s}|\boldsymbol{x}) = \frac{p(\boldsymbol{x}|\boldsymbol{s})p(\boldsymbol{s})}{\int p(\boldsymbol{x}|\boldsymbol{s}')p(\boldsymbol{s}') \, d\boldsymbol{s}'}$$

$$p(\boldsymbol{s}|\boldsymbol{x}) = \frac{p(\boldsymbol{x}|\boldsymbol{s})p(\boldsymbol{s})}{\int p(\boldsymbol{x}|\boldsymbol{s}')p(\boldsymbol{s}') \, d\boldsymbol{s}'}$$

Directly Using a Noise Model for Denoising?

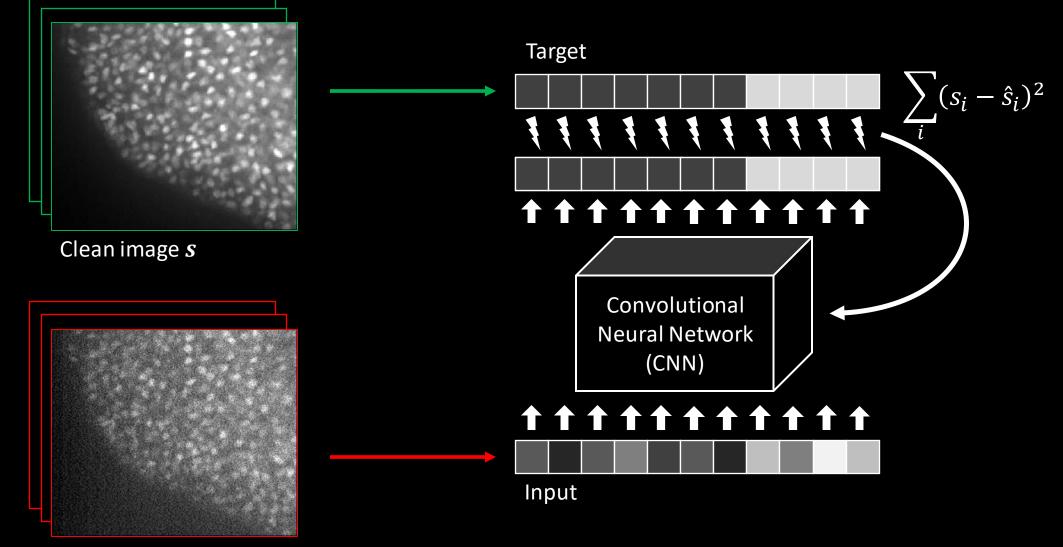


- How can we find *s*?
- How will it compare to the supervised approach?
 - Advantages?

 \bullet

We need noise model **and** prior. $p(s|x) = \frac{p(x|s)p(s)}{\int p(x|s')p(s') ds'}$ Disadvantes?

CARE – Traditional Supervised Training



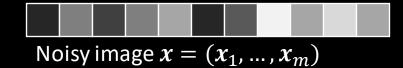
Noisy image *x*

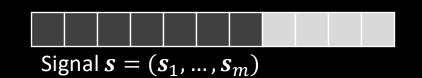
Noise2Noise

You only need <u>noisy data</u>!

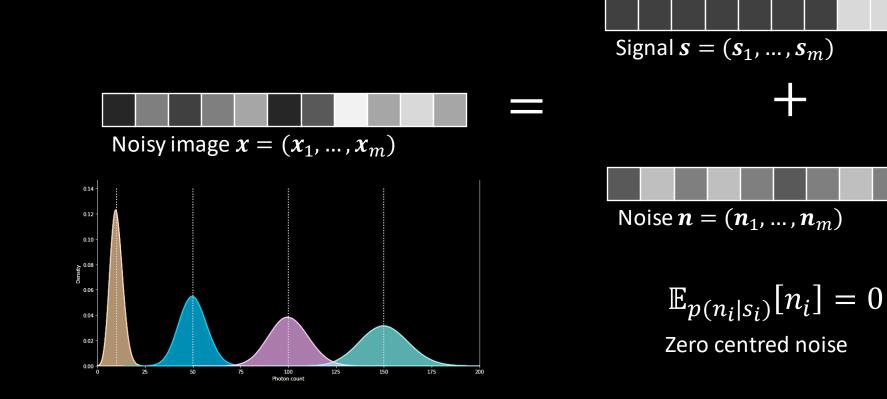
Lehtinen et al. 2018

Noise2Noise

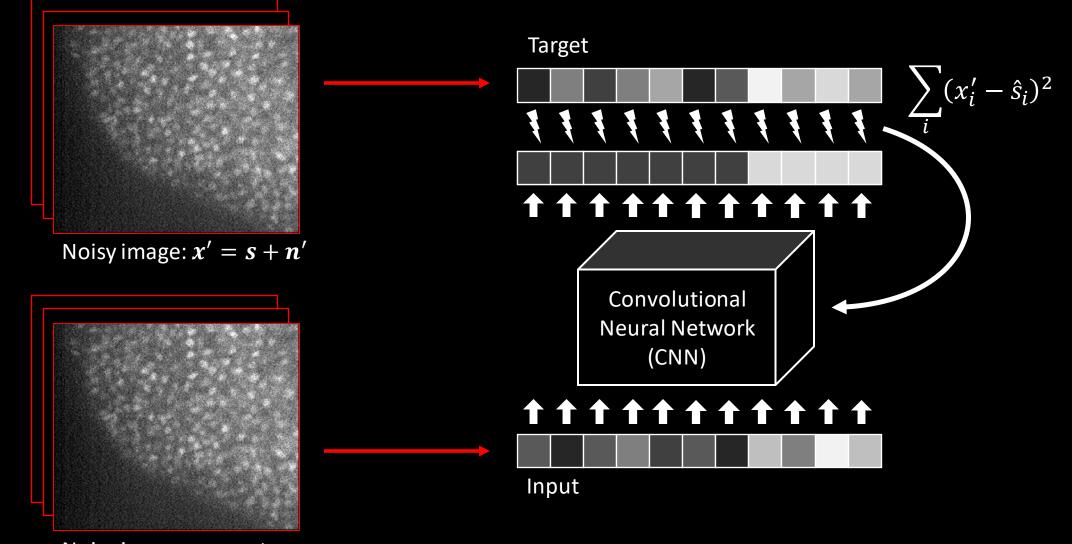




Noise2Noise



Noise2Noise training



Noisy image: x = s + n

Noise2Noise - Why does it work?

Supervised: Minimising $\sum_{i} (s_{i} - \hat{s}_{i})^{2} \longrightarrow \hat{s}_{i} \approx \mathbb{E}_{p(s_{i}|x_{i})}[s_{i}]$

N2N: Minimising $\sum_{i} (x'_{i} - \hat{s}_{i})^{2} \longrightarrow \hat{s}_{i} \approx \mathbb{E}_{p(x'_{i}|x)}[x'_{i}]$ $= \mathbb{E}_{p(s_{i}|x)}[s_{i}]$

Noise2Noise - Why does it work?

 $\mathbb{E}_{p(x_i'|x)}[x_i']$

 $= \int p(x_i'|\mathbf{x}) x_i' \, dx_i'$ Marginalisation $= \int x'_i \int p(x'_i, s_i | \mathbf{x}) \, ds_i \, dx'_i$ $= \int x'_i \int p(x'_i|s_i, \mathbf{x}) p(s_i|\mathbf{x}) ds_i dx'_i$ Product rule Product rule $= \int \int x'_i p(x'_i | s_i, \mathbf{x}) p(s_i | \mathbf{x}) \, ds_i \, dx'_i$ $= \left(\int x_i' p(x_i'|s_i, \mathbf{x}) p(s_i|\mathbf{x}) dx_i' ds_i \right)$ $= \int p(s_i | \boldsymbol{x}) \int x_i' \, p(x_i' | s_i, \boldsymbol{x}) \, dx_i' \, ds_i$

$$= \int p(s_i | \mathbf{x}) \int x'_i p(x'_i | s_i, \mathbf{x}) dx'_i ds_i$$

$$= \int p(s_i | \mathbf{x}) \int x'_i p(x'_i | s_i) dx'_i ds_i$$

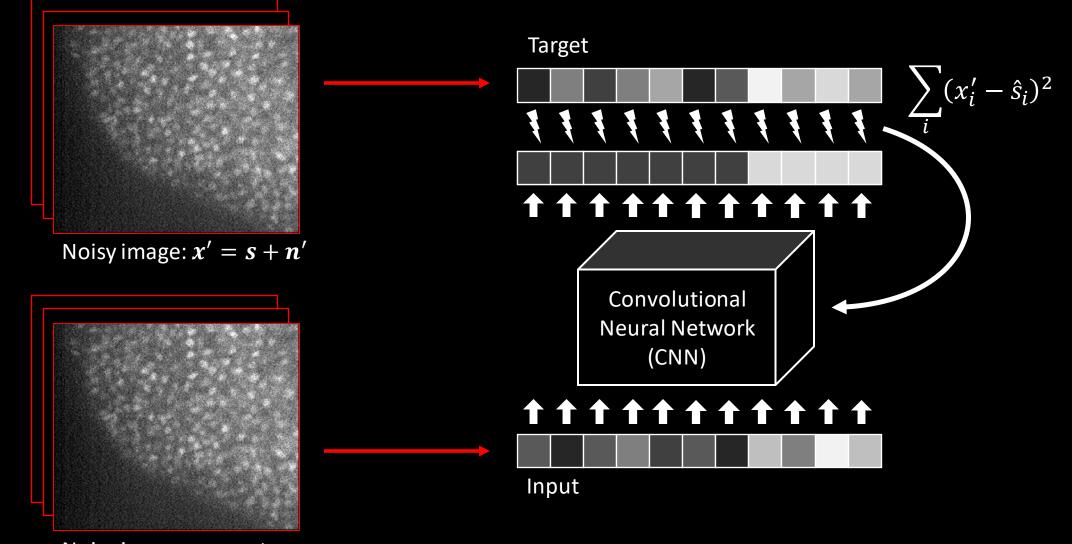
$$= \int p(s_i | \mathbf{x}) \mathbb{E}_{p(x'_i | s_i)}[x'_i] ds_i$$

$$= \int p(s_i | \mathbf{x}) s_i ds_i$$

Expected value

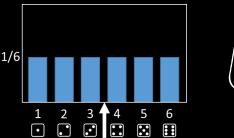
$$= \mathbb{E}_{p(s_i | \mathbf{x})}[s_i]$$

Noise2Noise training



Summary

- Traditional supervised training:
 - Tries to map noisy image to clean image.
 - Impossible: map to expected value of clean image.
 - Downside: requires clean images during training.



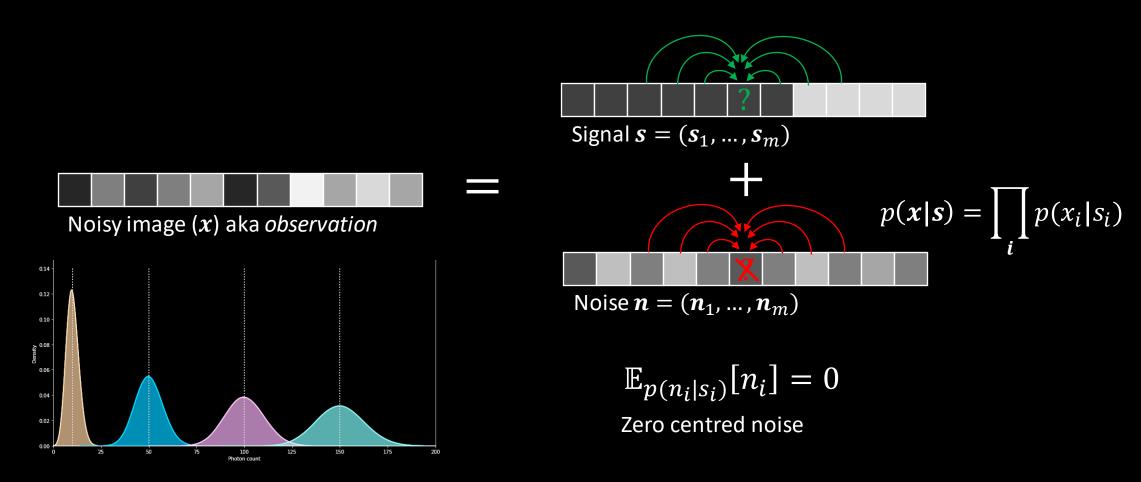
- Noise2Noise training:
 - Requires no clean data.
 - Tries to map noisy image to noisy image.
 - Impossible: also map to expected value of clean image.
 - Downside: Still requires image pairs.

Self-Supervised Denoising: Noise2Void

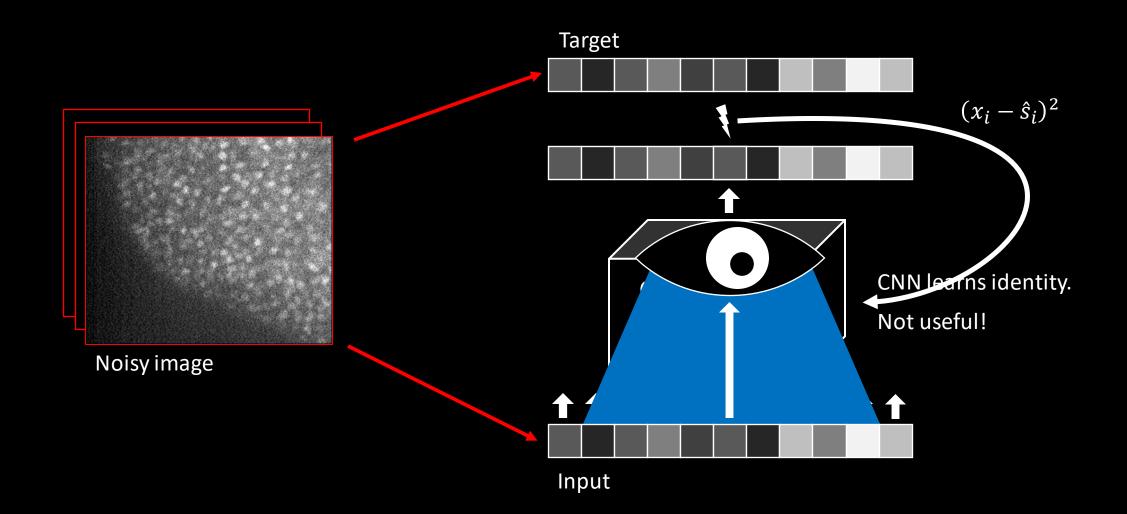
You only need individual noisy images!

Krull, Buchholz, and Jug 2019

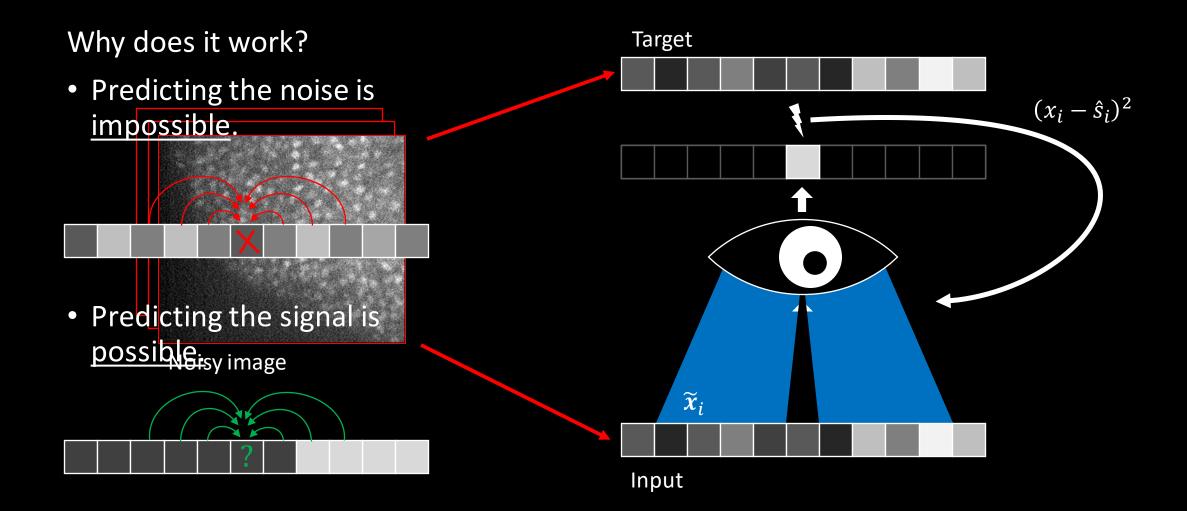
Noise2Void – Assumptions



Noise2Void

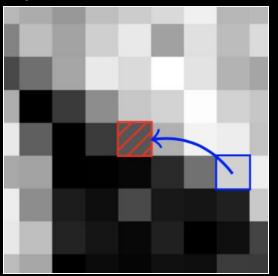


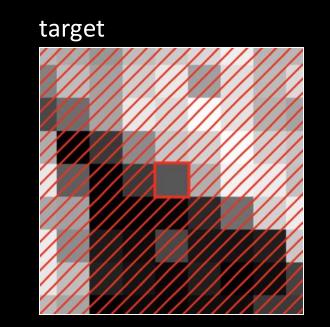
Noise2Void - Blind Spot Network



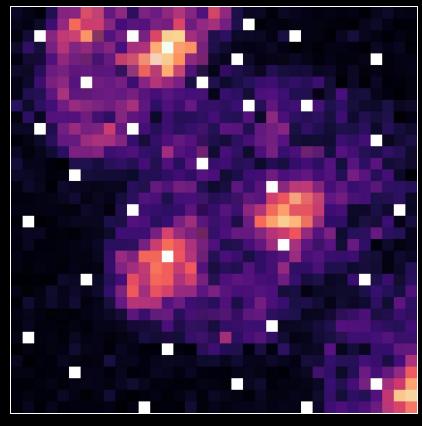
Noise2Void - Blind Spot Implementation

input

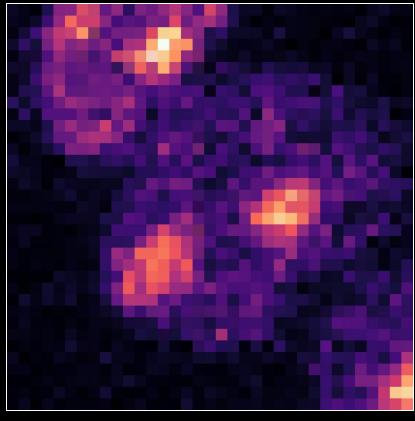




Noise2Void - Blind Spot Implementation

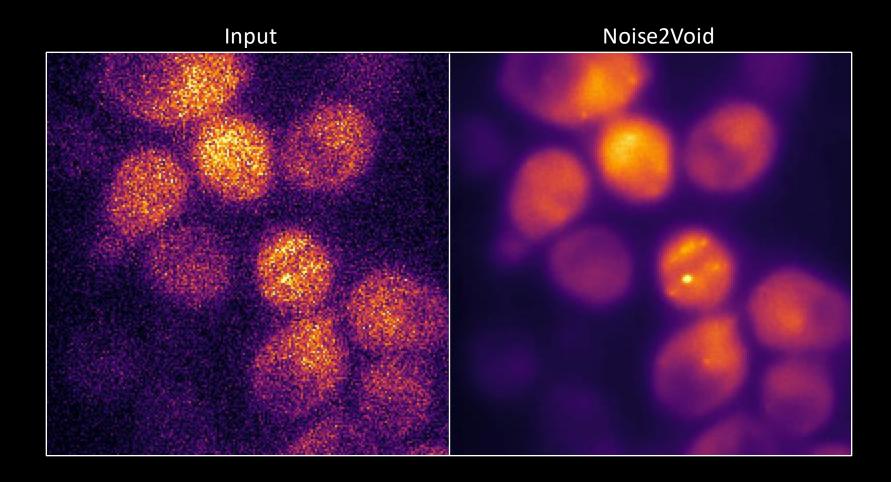


Input



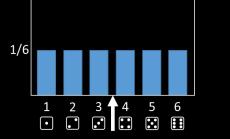
Target

Noise2Void - Results

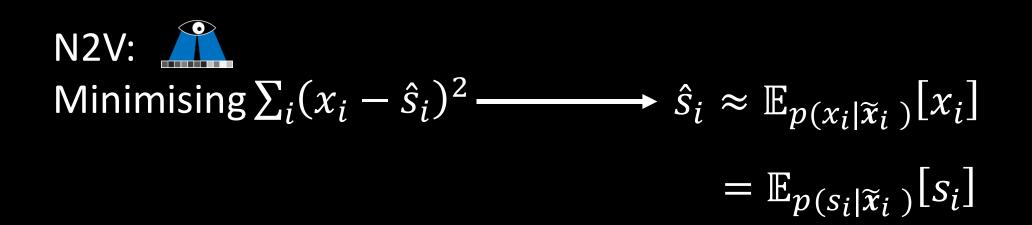


Data by Stephanie Heinrich

Noise2Void - Why does it work?



Supervised: Minimising $\sum_{i} (s_{i} - \hat{s}_{i})^{2} \longrightarrow \hat{s}_{i} \approx \mathbb{E}_{p(s_{i} | \mathbf{x})}[s_{i}]$



Why it works:

 $\mathbb{E}_{p(x_i|\widetilde{x}_i)}[x_i]$

 $= \int x_i p(x_i | \widetilde{\mathbf{x}}_i) dx_i$ Marginalisation $= \int x_i \int p(x_i, s_i | \tilde{\mathbf{x}}_i) \, ds_i \, dx_i$ $= \int x_i \int p(x_i | s_i, \widetilde{x}_i) p(s_i | \widetilde{x}_i) ds_i dx_i$ Product rule $= \int \int x_i p(x_i | s_i, \widetilde{x}_i) p(s_i | \widetilde{x}_i) \, ds_i \, dx_i$ $= \int \int x_i p(x_i | s_i, \widetilde{x}_i) p(s_i | \widetilde{x}_i) \ dx_i \ ds_i$ $= \int p(s_i | \widetilde{\boldsymbol{x}}_i) \int x_i \, p(x_i | s_i, \widetilde{\boldsymbol{x}}_i) \, dx_i \, ds_i$

$$= \int p(s_i | \tilde{x}_i) \int x_i p(x_i | s_i, \tilde{x}_i) dx_i ds_i$$

$$= \int p(s_i | \tilde{x}_i) \int x_i p(x_i | s_i) dx_i ds_i$$

$$= \int p(s_i | \tilde{x}_i) \mathbb{E}_{p(x_i | s_i)} [x_i] ds_i$$

$$= \int p(s_i | \tilde{x}_i) s_i ds_i$$

Expected value

$$= \int p(s_i | \tilde{x}_i) s_i ds_i$$

Expected value

$$= \mathbb{E}_{p(s_i | \tilde{x}_i)} [s_i]$$

Mangal Prakash

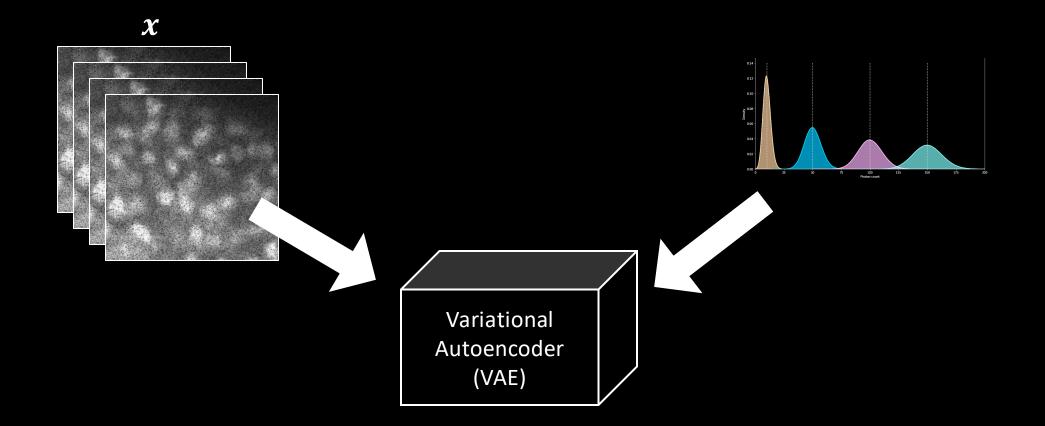
DivNoising and HDN

Diverse Solutions - Accounting for uncertainty.

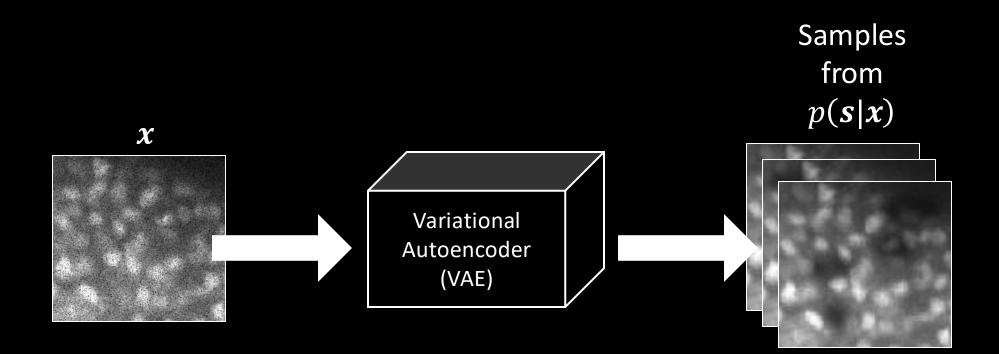
Prakash, Krull, Jug 2020

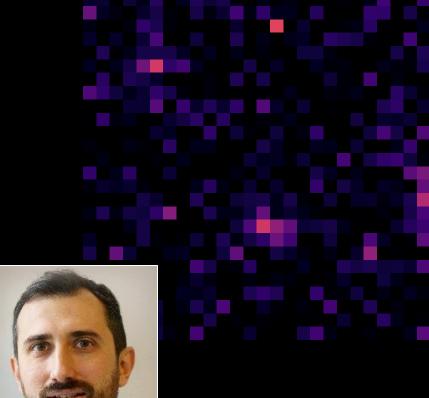
Prakash, Delbracio, Milanfar, Jug 2022

DivNoising Training

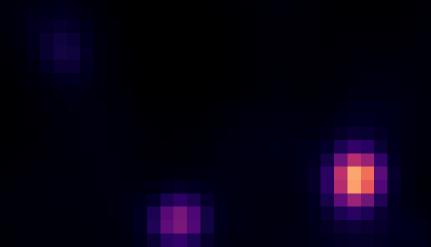


DivNoising Testing

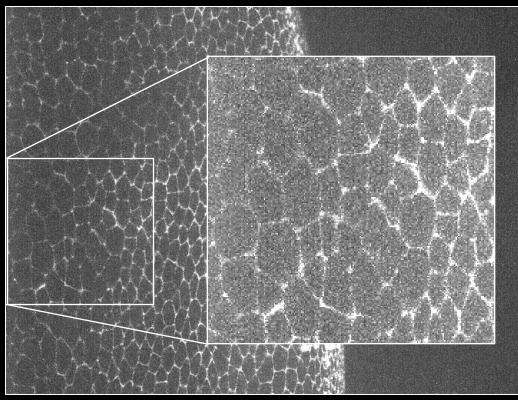




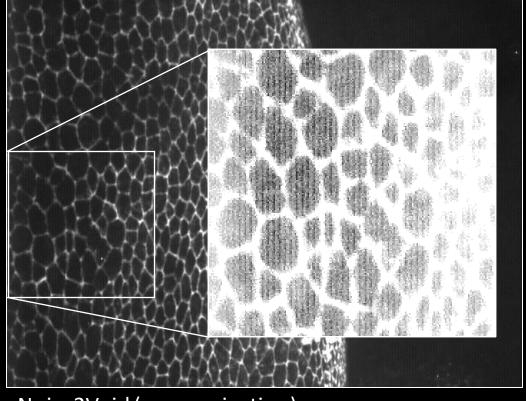
Data by Davide Calebiro



Noise2Void - results



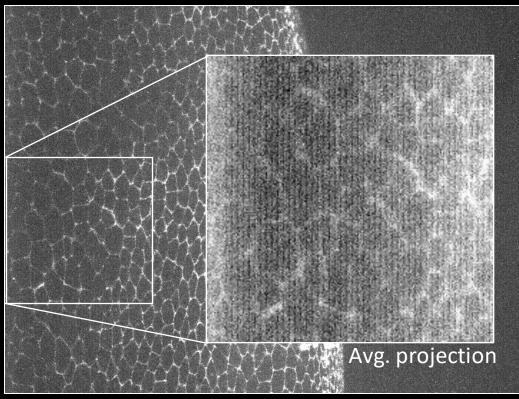
Input (max projection)



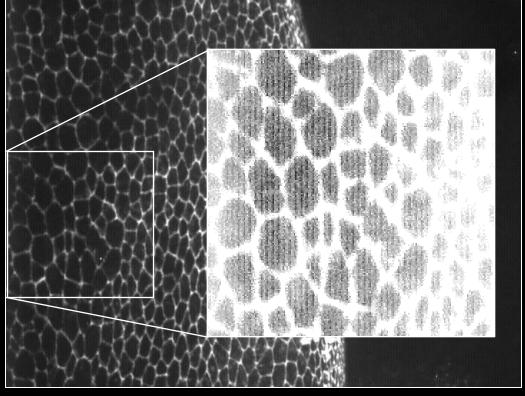
Noise2Void (max projection)

Data by Romina Piscitel, Eaton lab at MPI-CBG

Noise2Void - limitations



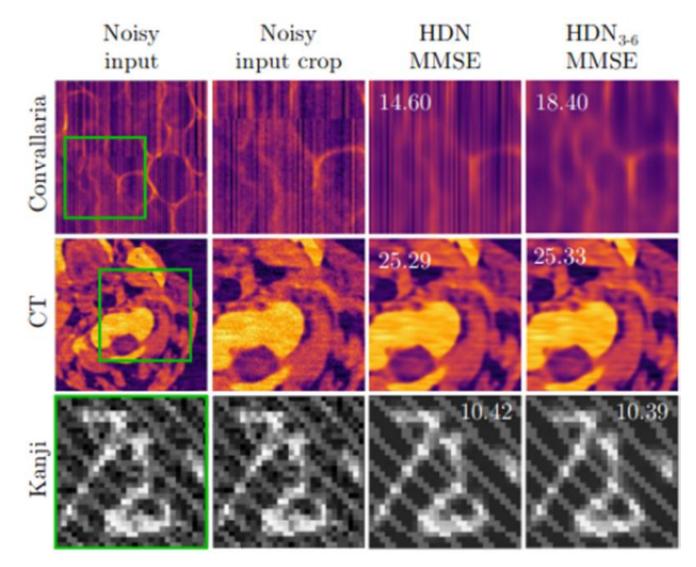
Input (max projection)



Noise2Void (max projection)

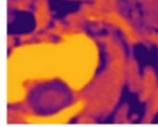
Data by Romina Piscitel, Eaton lab at MPI-CBG

What about structured Noise? (Thanks to Ben Salmon)



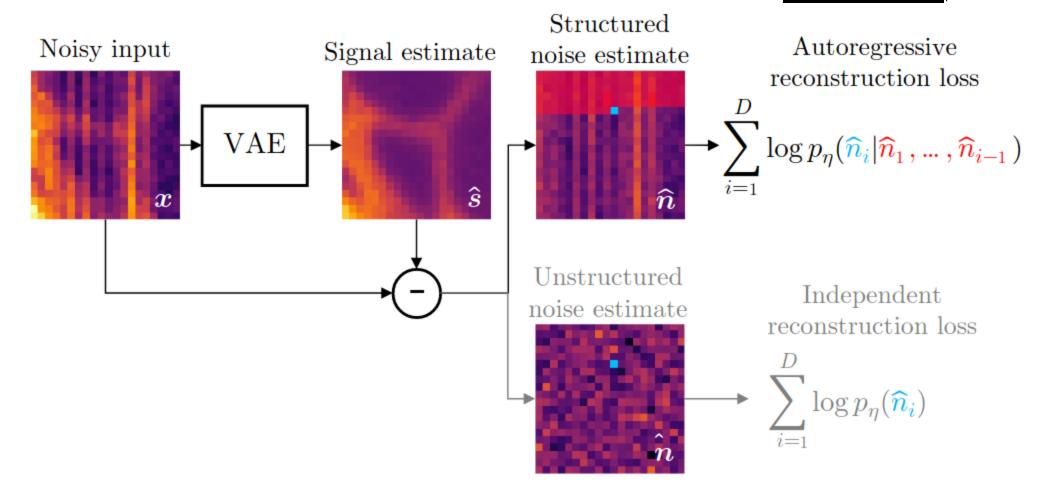
Ground truth



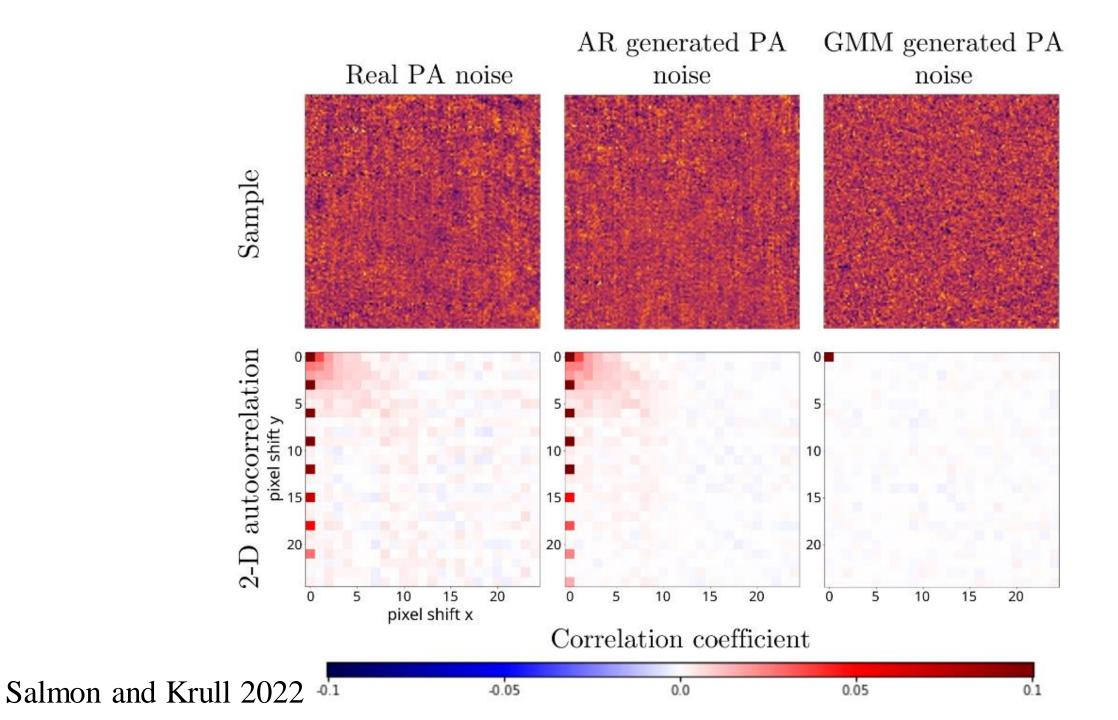


Salmon and Krull 2022

CNN with Special receptive field



Salmon and Krull 2022



Thank you!