

HESEB Helmholtz-SESAME Soft X-Ray Beamline for SESAME

SESAME

SESAME

Introduction of the HESEB Beamline

Dr. Mustafa Fatih GENISEL

mustafa.genisel@sesame.org.jo

HESEB Soft X-ray Lecture & Training Course at SESAME - 08/05/2023

HESEB (Helmholtz-Sesame Beamline) Project

- Project period: 4 years, project start 01/2019
- Project funding: 3,5 M€ from Helmholtz Association
- Project execution:

- Deutsches Elektronen–Synchrotron (DESY)
- Forschungszentrum Jülich (FZJ)
- Helmholtz–Zentrum Dresden–Rossendorf (HZDR)
- Helmholtz–Zentrum Berlin (HZB)
- Karlsruhe Institute of Technology (KIT)
- Partners: SESAME, user communities from SESAME member
- First Soft X-Ray beamline in SESAME
- First Undulator in SESAME

Energy of Some Core Electrons (200 – 2000 eV)

Table 1-1. Electron binding energies, in electron volts, for the elements in their natural forms.

Element	K 1s	L ₁ 2s	L ₂ 2p _{1/2}	L ₃ 2p _{3/2}	M ₁ 3s	M ₂ 3p _{1/2}	M3 3p3/2	M4 3d3/2	M5 3d5/2	N ₁ 4s	N ₂ 4p _{1/2}	N ₃ 4p _{3/2}	
1 H	13.6												
2 He	24.6*												
3 Li	54.7*	K– Shel											
4 Be	111.5*		50	n citiva	to Air								
5 B	188*	serisitive to Air											
6 C	284.2*	2* Require Vacuum											
7 N	409.9*	37.3*		•									
8 O	543.1*	41.6*											
9 F	696.7*												
10 Ne	870.2*	48.5*	21.7*	21.6*									
11 Na	1070.8†	63.5†	30.65	30,81									
12 Mg	1303.0†	88.7	49.78	49,50									
13 Al	1559.6	117.8	72.95	72.55									
14 Si	1839	149.7*b	99.82	99.42									
15 P	2145,5	189*	136*	135*	I Shal								
16 S	2472	230.9	163.6*	162.5*	L- Shel	•							
17 CI	2822.4	270*	202*	200*									
18 Ar	3205.9*	326.3*	250.6†	248.4*	29.3*	15.9*	15.7*						
19 K	3608.4*	378.6*	297.3*	294.6*	34.8*	18.3*	18.3*						
20 Ca	4038.5*	438.4†	349.7†	346.2†	44.3 †	25.4*	25.4†						
21 Sc	4492	498.0*	403.6*	398.7*	51.1*	28.3*	28.3*						
22 Ti	4966	560.9†	460.2†	453.8†	58.7†	32.6†	32.6†		1.5.4				
				-				н	ard X i	ay re	gion		

Eleme	ent	K 1s	L ₁ 2s	L ₂ 2p _{1/2}	L ₃ 2p _{3/2}	M ₁ 3s	M ₂ 3p _{1/2}	M3 3p3/2	$M_4 \; 3d_{3/2}$	M5 3d5/2	N ₁ 4s	N ₂ 4p _{1/2}	N ₃ 4p _{3/2}
23 V	7	5465	626.7†	519.8†	512.1†	66.3†	37.2†	37.2*					
24 C	ïг	5989	696.0†	583.8*	574.1*	74.1†	42.2†	42.2*					
25 N	4n	6539	769.1†	649.9†	638,7†	82.3†	47.2†	47.2*					
26 F	e	7112	844.6†	719.9†	706.8†	91.3*	52.7†	52.7*					
27 C	0	- Shall	925.1†	793.2†	778.1*	101.0†	58.9†	59.9†					
28 N	li	L- Shen	1008.6†	870.0†	852.7*	110.8†	68.0†	66.2†					
29 C	u	8979	1096.7†	952.3†	932.7	122.5*	77.3†	75.1*					
30 Z	'n	9659	1196.2*	1044.9*	1021.8*	139.8*	91.4*	88.6*	10.2*	10.1*			
31 G	ìa	10367	1299.0*b	1143.2†	1116.4†	159.5†	103.5†	100.0†	18.7†	18.7†			
32 G	ie	11103	1414.6*b	1248.1*b	1217.0*b	180.1*	124.9*	120.8*	29.8	29.2			
33 A	s	11867	1527.0*b	1359.1*b	1323.6*b	204.7*	146.2*	141.2*	41.7*	41.7*			
34 S	e	12658	1652.0*b	1474.3*b	1433.9*b	229.6*	166.5*	160.7*	55.5*	54.6*			
35 B	Ir	13474	1782*	1596*	1550*	257*	180*	182*	70*	69*			
36 K	(r	14326	1921	1730.9*	1678.4*	292.8*	222.2*	214.4	95.0*	93.8*	27.5*	14.1*	14.1*
37 R	b	15200	2065	1864	1804	326,7*	248.7*	239.1*	113.0*	112*	30.5*	16.3*	15.3 *
38 S	r	16105	2216	2007	1940	358,7†	280.3†	270.0†	136.0*	134.2†	38.9†	21.3	20.1†
39 Y	r	17038	2373	2156	2080	392.0*b	310.6*	298.8*	157.7†	155.8†	43.8*	24.4*	23.1*
40 Z	r	17998	2532	2307	2223	430.3†	343,5†	329.8*	181.1*	178.8†	50.6†	28,5†	27.1*
41 N	lЬ	18986	2698	2465	2371	466.6†	376.1†	360.6†	205.0†	202.3†	56.4†	32.6†	30.8†
42 N	1o	20000	2866	2625	_ Shall	506.3†	411.6†	394.0†	231.1*	227.9†	63.2†	37.6†	35.5*
43 T	c	21044	3043	2793	- Shell	544*	447.6	417.7	257.6	253.9*	69.5*	42.3*	39.9*
44 R	tu	22117	3224	2967	2838	586.1*	483.5†	461.4†	284.2*	280.0†	75.0†	46.3†	43.2*
45 R	h	23220	3412	3146	3004	628.1*	521.3*	496.5*	311.9*	307.2*	81.4*b	50.5*	47.3*
46 P	d	24350	3604	3330	3173	671.6*	559.9†	532.3*	340.5†	335.2*	87.1*b	55.7†a	50.9†
47 A	g	25514	3806	3524	3351	719.0†	603.8*	573.0*	374.0*	368.3	97.0†	63.7*	58.3*

Table 1-1. Electron binding energies, in electron volts, for the elements in their natural forms.

HESEB Related Techniques *TXPES

SESAME
Layout

TXPE soft X- Photoe Spectr Beaml	S - Turkish ray electron oscopy in	BEATS - Tomography Beamline	MS - Materials Science Beamline		
HESEB - Soft 3	K-ray			XAFS/XRF - X-ra	y Absorption Fine
Beamline	1			Structure / X-ray Spectroscopy Beau	Fluorescence nline
					MX - Macromolecular Crystallography Beamline
1	5				
	SESA	ME storage ring p	arameters	Į.	
1 =	Energy	y (GeV) = 2.5			
The second secon	Currer	m(mA) = 400		1	
=	Circur	nference $(m) = 133$	3.2		
	Natura	ll emittance (nm.ra	ad) = 26	and	
- Infrared Beamline	10	0.0.0 · · · · ·	1 mai		

Plan View of HESEB and TXPES

Properties of Undulator (ID11)

- Straight section between Cell10-Cell11
- Apple II type
- Minimum energy 70eV
- Linearly or Circularly Polarized Light
- Period Length 56mm
- 30 periods

ID11-Undulator: BM10-BM11

Undulator: Apple II/UE56-SE

Undulator Harmonics and Their Orders

Front-End Section

Front-End Section

Properties of HESEB Beamline

- Energy Resolution: $10^4 \text{ E}/\Delta \text{E} @400 \text{ev}$ (40 meV)
- Two grating mirror 400 and 1200 grove/mm
- Can work Linear and Circularly polarized light
- Photon Energy Range: 90–1800 eV
- Cover Whole Periodic Table, except H, He, Li
- Flux on sample 10¹² s⁻¹
- Spot size: 180x25 µm² (h x v)
 - With optical capillary 20x20 µm²

HESEB End Station

HESEB End Station: Chamber

HESEB End Station: Load lock and Magnetic Transfer Arm

Properties of HESEB End Station

- Fluorescence Detector (XRF) (Bruker Xflash)
- Electron Yield Measurement (Keithley Picoammeters)
- LN₂ Cooling
- Sample Heating up to 800°C
- Magnetic Stage
- Motorized Sample Holder for 2D Mapping
 - Iateral resolution 1µm
- Differential Pumping

- Measurement at low vacuum at He atmosphere for vacuum sensitive samples (i.e. Historical samples)
- Measurement at different atmospheres

HESEB: Sample holder and Receptacle Part

Optical Capillary and Differential Pumping Ability

The Permenant Magnet Assembly on the Cooling Slot of Receptacle Part

The Permenant Magnet holder design Explosion view

Electromagnet Design

Top Isometric view

Bottom View

Electromagnet Design Section View

Electromagnet Design Explosion View

Plan View of HESEB and TXPES

Turkish Soft X-ray Photoelectron Spectroscopy End Station (TXPES) Project

- Project Duration: 36 Months (02/2020 02/2023)
- Project Budget: 老27 M (TC-SBB)
- Project Coordinator: Turkish Energy Nuclear and Mineral Research Agency (TENMAK)
- Project Partners: Bilkent University,
 - **Turkish Accelerator &**

Radiation Laboratory (TARLA),

Koç University

TXPES Beamline

HESEB ID11–Left

TXPES End Station Components: Chamber

- PHOIBOS 150 CMOS XPS/LEIS Analyzer
- XR 50: Dual Anode X-ray Source
- UVS 10: UV Source (for UPS)
- Electron Flood Gun

HPC-20 High

Pressure Cell

for Reactive

Pretreatment

Sample

- Rastering Ion Gun for LEIS/Depth Profiling
- 4-Axis Manipulator with LN₂ Cooling & Resistive Heating to 1200 K

High-

Pressure

Chamber

Preparation Chamber

Analysis

Chamber

- RF-Plasma Source
- Hydrogen Cracker
- LEED
- QMS
- Metal/Metal Oxide Evaporators
- Gas Dosers
 - 4-Axis Manipulator with LN₂
 Cooling & Resistive Heating to
 1200 K
 - Sample
 Loading/Removal

Load Lock Chamber

TXPES End Station: Top View (Mid-Cross Section)

Analysis Chamber

TXPES End Station: Isometric View

Acknowledgments

HESEB project team

HZB Helmholtz Zentrum Berlin

SESAME

SESAME colloquies

