From starlight to spectra – Observations for stellar abundance determinations

Heidi Korhonen Heidi.Korhonen@eso.org European Southern Observatory Chile

Outline

- Introduction to spectroscopy and spectrographs
- Spectral resolution
- Effects of the Earth's atmosphere
- How and from where to obtain observations

What is spectroscopy?

Spectroscopy, study of the absorption and emission of light and other radiation by matter, as related to the dependence of these processes on the wavelength of the radiation. (from Encyclopaedia Britannica)

Spectroscopy

- Spectral analysis is probably the most important method for learning about the physics of astronomical sources
- Simplest method to get spectral information is using filters
- In this case the size of the spectral element we can resolve is the width of the filter
- More detailed information is obtained if the light is sent through a dispersive element

Dispersive elements

- The core optical element of an astronomical spectrograph is its dispersive element
- With a dispersive element, the angle at which the light leaves it, is wavelength dependent.
- There are two kinds of dispersive elements:
 - Prisms
 - Grating

Gratings

The spectrum is repeated in the different orders of diffraction. Only the zeroth order spectrum is pure white light.

Spectrograph

Collimator makes the rays parallel **Grating** disperses the light into colours **Camera** re-images the rays onto a CCD or infra-red detector

Why to use slit?

Multi-object spectroscopy

Resolving power

Resolving power

- Resolving power (R) tells how small details we can resolve in the spectrum
- It is defined as $\lambda / \Delta \lambda$
- So for example:
 - R=1000 at 6500 Å gives $\Delta\lambda$ =6.5 Å or ~ 300km/s
 - $-R=10\ 000\ at\ 6500\ \text{\AA}$ gives $\Delta\lambda=0.65\ \text{\AA}$ or ~30km/s
 - R=100 000 at 6500 Å gives $\Delta\lambda$ =0.065 Å or ~3km/s
- At a given R, the resolution in velocity does not change with wavelength:

 $- R = \lambda \Delta \lambda = c \Delta v$

Lines get "diluted" by low resolution

High resolution spectroscopy

- For seeing detailed structures in our spectra one resolution element has to be small, i.e., the spectral resolution has to be high
- With high spectral resolution we can for example study in detail the composition of stellar atmospheres

23Å of stellar spectra centered at λ6245Å

Échelle gratings

- For high resolution astronomical work échelle is the preferred choise over a grating used in low order
- The reasons for this are:
 - Two dimensional format that permits broad spectral coverage
 - Allows compact spectrograph design
- Échelle has a large groove spacing and is used at high order number, thus it is necessary to use a cross-disperser to separate the orders, or to use a filter to isolate a single order

Échelle spectrum

N.A.Sharp, NOAO/NSO/Kitt Peak FTS/AURA/NSF

And when unstacked

UVES at ESO's VLT

UVES at ESO's VLT

UVES at Kueyen

ESO PR Photo 43e/99 (8 December 1999)

Take home messages - 1

Choose your instrument wisely. For a single object quite high spectral resolution (up to 250,000) is possible. If you want more objects at the same time you are limited by your detector area and need to sacrifice resolution and/or wavelength coverage

In high spectral resolution you are dividing the photons coming from your target into smaller and smaller wavelength bins. Therefore you are often limited to **bright targets** (or need a larger telescope)

Some effects in your spectra

Solar Radiation Spectrum

Absorption lines

Also much weaker atmospheric absorption lines exist, but they are often only detectable with high spectral resolution

Here some water lines, which also change strength night to night, depending on how much water is in the atmosphere

Atmospheric absorption lines can be modelled quite well, though and there are tools for removing them, e.g., ESO's Molecft

Night sky emission in optical

Wavelength (Angstroms)

Light pollution

And don't smoke at the telescope

POTASSIUM FLARES

ROBERT F. WING, MANUEL PEIMBERT, AND

HYRON SPINRAD

Berkeley Astronomy Department University of California

Received April 14, 1967

The appearance of intense emission lines of neutral potassium at $\lambda\lambda$ 7665, 7699 on coudé spectrograms of three stars obtained at the Haute-Provence Observatory has prompted us to conduct a survey of 162 bright stars for emission at λ 7699, using a photoelectric scanner. No definite potassium flares were observed. We discuss the advantages of using a scanner for such a survey and for measuring potassium absorption in late-type dwarfs.

An artificial origin of the emission lines is suggested by the fact that the infrared resonance lines of K I are by far the strongest features in the spectra of matches. Experiments at the Lick and Haute-Provence coudé spectrographs have shown that if a match is struck at certain positions in the coudé room during the exposure of an infrared spectrogram, the resulting potassium emission lines can appear very similar to those previously observed.

Atmospheric dispersion

- Causes mainly problems for spectroscopy in the form of *slit losses*, which stem from the fact that bluer wavelengths are more strongly refracted.
- Can be avoided by placing the slit in the *parallactic angle*, i.e. perpendicular to the horizon.

Reducing spectra

- Reducing spectra is more complicated than reducing images, because higher number of calibrations are needed
- In addition to the science frames you will need:
 - Bias frames for removing the constant offset applied to detectors (in order not to have negative counts)
 - A continuum lamp image for removing non-uniform illumination due to optics and removal of pixel-to-pixel variations.
 - A line lamp (so-called arc) frame for wavelength calibration
 - A standard star spectrum for flux calibration (often not used for high resolution spectroscopy)
- Usually the continuum and line lamps are inside the instrument in a special calibration unit.

Take home messages - 2

Only a fraction of the light from the target arriving at Earth reaches your detector

If you see stange features in your spectra, do not immediatelly write a Nature paper.

How to get observing time for your favourite target? Where to find the right telescope and instrument?

Proposal: from idea to science

Deringer

Where to get observing time?

- ESO Anyone can apply
- <u>ORP/OPTICON</u> (EU funded) Anyone can apply
- <u>NOIRLab</u> (NSF funded) – Anyone can apply
- National/institute facilities – usually only people working in the institute/country can apply

ESO Call for Proposals — P103 Proposal Deadline: 27 September 2018, 12:00 noon CEST

Number of proposals - ESO

Number of Proposals/PIs

Service vs visitor

In **service mode** the observatory does the observations for you when the conditions are best for your programme

PROs: You will get the observations in optimal conditions

CONS: Predefined observations

In **visitor mode** you go to the observatory and do the observations

PROs: You can change your observations on the fly

CONs: Weather is what it is

Finding information on your target

- For stars: SIMBAD
- For extra-galactic objects: NED

SIMDAB query result for FK Com:

Basic data :

V* FK Com -- Rotationally variable Star

SIMBAD query around with radius 2 Other object types: * (HD,AG,...), X (2015A&A,2E,...), ** (**,ADS,...), V* (2012ApJ,ASAS,...), Ae* (1999AJ), PM* (2018yCat), Ro* (2009yCat), Rad (FIRST), IR (2MASS) Interactive AladinLite view **ICRS** coord. (*ep=J2000*) : 13 30 46.7993742986 +24 13 57.786184235 (Optical) [0.0318 0.0223 90] A 2018yCat.1345....0G FK4 coord, (ep=B1950 ea=1950); 13 28 24.7543213278 +24 29 25.373558198 [0.0318 0.0223 90] Gal coord. (ep=J2000) : 017.0211082191669 +80.6785094749651 [0.0318 0.0223 90] Proper motions mas/vr : -51.969 -22.262 [0.085 0.040 90] A 2018yCat.1345....0G V(km/s) -21.00 [5.8] / z(~) -0.000070 [0.000019] / cz -21.00 [5.80] Radial velocity / Redshift / cz : D 2007AN....328..889K Parallaxes (mas): 4.6102 [0.0446] A 2018yCat.1345....0G Spectral type: G4III C 2009A&ARv..17..251S Fluxes (12) : B 9.04 [~] E ~ V 8.245 [0.067] C 2012AcA....62...67K G 7.9082 [0.0017] C 2018yCat.1345....0G oV: 3.66 I 7.204 [0.040] C 2012AcA....62...67K SDSS V 2MASS ODSS SDSS J 6.541 [0.021] C 2003vCat.2246....0C H 6.089 [0.018] C 2003yCat.2246....0C K 5.997 [0.015] C 2003yCat.2246....0C u (AB) 13.823 [0.011] D 2009yCat.2294....0A g (AB) 13.123 [0.008] C 2009yCat.2294....0A VizieR photometry viewer r (AB) 12.559 [0.01] C 2009yCat.2294....0A i (AB) 12.329 [0.011] D 2009yCat.2294....0A Search within radius Max 30 2 arcsec z (AB) 7.759 [0.001] C 2009yCat.2294....0A

 $\mathbf{N}^{(0)}$

arcmin

When is your target observable?

- There is a lot of software available for plotting visibilities of targets
- Most large observatories have their own
- I like <u>Staralt</u> because of the many predefined observatories and you can even put in your own

Visibility of FK Com in La Palma and Chile

- FK Com has declination +24 it is a northern hemisphere target
- It has right assencion of 13 hours, meaning it is best visible during the northern hemisphere spring

Visibility of FK Com in La Palma and Chile

- FK Com has declination +24 it is a northern hemisphere target
- It has right assencion of 13 hours, meaning it is best visible during the northern hemisphere spring

Exposure Time Calculator (ETC)

Most larger observatories have exposure time calculators for their instruments

Target Input Flux Distribution

 Template Spectrum 	G0 (Pickles) ~		
MARCS Stellar Model	Teff=4000 log(g)=-0.5 [Fe/H]= 0 M= 1	Redshift $z = 0.00$	Target Magnitude and Mag.System:
O Upload Spectrum	Select		V → = 7.900 ○ Vega ○ AB
Blackbody	Temperature: K		Magnitudes are given per arcsec ² for extended sources
O Power Law	Index: $F(\lambda) \propto \lambda^{index}$		
© Emission Line	Lambda: nm Flux: 10 ⁻¹⁶ ergs/s/cm ² (per arcse FWHM: nm	ec² for extend	ed sources)

Spatial Distribution:
 Point source
 Extended source

Take home messages - 3

Anyone can apply observing time from:

- <u>ESO</u>
- <u>ORP/OPTICON</u> (Note that the website might change as OPTICON is ending and ORP is starting)
- <u>NOIRLab</u>

Plan your observations well. **Telescope time is expensive!** 2m class telescope costs ~3,000EUR/night 4m class telescope costs ~12,000 EUR/night 8m class telescope costs ~35,000 EUR/night (~1EUR/sec!)

Telescopes with main mirror >8m

Large Binocular Telescope (LBT) – 2 x 8.4m – Mt. Graham, Arizona, USA (effective aperture 11.9m)				
<u>PEPSI</u>	wl = 383 – 907nm	R=50,000 – 250,000	Needs three exposures for the full coverage	Access: Institutes
<u>Gran Teles</u> spectrogpr	<u>copio Canarias (GTC)</u> aphs)	– 10.4m – La Pal	lma, Spain (no hi	gh resolution
Hobby Eberly Telescope (HET) – 10m – McDonald Observatory, Texas, USA (altitude fixed to 55 degrees)				
<u>HPF</u>	wl = 810 – 1280nm	R~53,000	Needs two exposures for the full coverage	Access: Institutes
<u>Keck 1 & 2 –</u> 10m – Mauna Kea, Hawaii, USA				
HIRES	wl = 300 – 1000nm	R~25,000 – 85,000		Access: institutes and <u>NOIRLab</u>
<u>NIRSPEC</u>	wl = 950 – 5000nm	R~ 25,000		Access: institutes and <u>NOIRLab</u>

Telescopes with main mirror >8m

Southern African Large Telescope (SALT) – 9.2m – Sutherland, South Africa (altitude fixed to 55 degrees, like HET)				
<u>HRS</u>	wl = 370 - 550 nm & 550 - 890nm	R=14,000 – 65,000	Needs three obs for full coverage	Access: Institutes and <u>ORP</u>
Very Large Te	lescope_of <u>ESO</u> – 4	x 8.2m – Cerro	Paranal, Chile	
<u>CRIRES+</u>	wl = ~950 – ~5000nm	R=50,000 or 100,000	Being commisisoned	Access: <u>ESO</u>
<u>ESPRESSO</u>	wl = 380 – 788nm	R=70,000 – 190,000	can be used on a single 8m telescope or combining light from all four	Access: <u>ESO</u>
<u>FLAMES</u>	wl = 370 - 950 nm (~100nm per obs)	R=7,000 – 47,000	Some 130 objects at a time	Access: <u>ESO</u>
UVES	wl = 300 – 1100nm	R~40,000 – 110,000	Needs two obs for full coverage	Access: <u>ESO</u>
<u>X-Shooter</u>	wl = 300 – 2500nm	R~ 3,000 – 19,000		Access: <u>ESO</u>

Telescopes with main mirror >8m

<u>Subaru</u> – 8.2m – Mauna Kea, Hawaii, USA				
<u>HDS</u>	wl = 300 – 1000nm	R up to 160,000		Access: National, institutes and international
IRD	wl = 970 – 1750nm	R~70,000	<u>Visitor</u> instrument	Access: National, institutes and international

<u>Gemini North and Gemini South</u> – 2 x 8.1m – Mauna Kea, Hawaii, USA and Cerro Pachon, Chile (the instruments mentioned below are at Gemini North)

<u>GRACES</u>	wl = 400 – 1000nm	R~40,000 or 60,000	Visitor instrument (not always available)	Access: institutes and <u>NOIRLab</u>
MAROON-X	wl = 500 – 920nm	R~80,000	Visitor instrument (not always available)	Access: institutes and <u>NOIRLab</u>

Other telescopes of interest: at least 3.5m diameter mirror and universal access

William Herschel Telescope (WHT) – 4.2m – La Palma, Spain					
<u>WEAVE</u>	wl = 404 – 465nm, 473 – 545nm, and 595 – 685 nm (with some small gaps)	R up to 20,000	1000 objects over 2 square degree field, being commissioned	Access: National (mostly for predefined surveys), <u>ORP</u> ?	
VISTA at ESO – 4.1m – Cerro Paranal, Chile					
<u>4MOST</u>	wl = 392.6 – 435.5nm, 516 – 573nm, and 610 – 679 nm	R up to ~20,000	2400 objects over 4 square degree field, being built	Access: <u>ESO</u>	
<u>TNG</u> – 3.58m – La Palma, Spain					
HARPS-N	wl = 383 – 693nm	R~115,000	High radial velocity precision	Access: National, institutes and <u>ORP</u>	

Other telescopes of interest: at least 3.5m diameter mirror and universal access

Canada-France-Hawaii-Telescope (CFHT) – 3.58m – Mauna Kea, Hawaii, USA

<u>ESPaDOnS</u>	wl = 370 – 1050nm	R ~68,000 or 81,000	Includes spectro- polarimetry	Access: National, institutes, <u>ORP</u>
<u>SPIRou</u>	wl =950 – 2350nm	R ~75,000	Includes spectro- polarimetry	Access: National, institutes, <u>ORP</u>
<u>ESO 3.6m</u> at	<u>ESO</u> – 3.57m – Cer	ro Paranal, Chile		
<u>HARPS</u>	wl = 383 – 691 nm	R ~115,000	High percision, includes spectro- polarimetry	Access: <u>ESO</u>
<u>CAHA 3.5</u> – 3.5m – Calar Alto, Spain				
<u>CARMENES</u>	wl = 520 - 960nm & 960 - 1710nm	R~80,000 – 100,000	High radial velocity precision	Access: National, institutes and <u>ORP</u>