CNO break out in first stars: Direct measurement of the key ¹⁹F(p,γ)²⁰Ne reaction in JUNA

Liyong Zhang Beijing Normal University

Nuclear Astrophysics

First stars: Hydron burning

p-p Chains

CNO cycles

Iliadis 2017

First stars: Hydron burning

triple- α process produce ¹²C and CNO cycles started

Hydrogen or silicon burning?

Ca can be produced during hydrogen burning via proton capture reactions (no iron produced)

Ca can also be produced in the Si shell, and ejected together with iron via supernova burst

Observe the elemental abundance of first stars

First stars: Observation

JWST: Directly observe the first stars, seeing back into the cosmos

Analyze the spectrum, get elemental abundance information

First stars: Observation

First stars -> Supernova -> nebula -> second generation star(SMSS 0313-6708)

S.C. Keller et al., Nature 506 (2014) 463

~6000 light year from Earth, formed 13.7 billion years ago, shortly after the Big Bang. It's the oldest star yet found.

The oldest star, SM0313-6718:

- Ca were observed without Fe
- Ca could be produced during hydrogen burning stage
- The ¹⁹F(p,γ)²⁰Ne reaction should be 7-10 times larger to reproduce the Ca abundance

¹⁹F(p,γ)²⁰Ne: Experimental measurement

Recent measurement:

- Experimental data: ~300 keV
- Gamow window : 100 keV
- Possible resonance not observed

Challenges due to extremely low cross section:

- Cosmic ray induced background
- Target stability

¹⁹F(p,γ)²⁰Ne: Experimental challenges

Cosmic-ray induced background:

- high energy proton hit on atmosphere atoms, produce μ
- μ loss energy in detectors, produce background single

Target stability:

- Heat damage
- Target atom loss
- Change of composition
- Contamination atoms

Reduce the cosmic-ray background

JUNA: Jinping Underground Nuclear Astrophysics experimental facility

Stable ¹⁹F target

- Implant ¹⁹F into Fe backing
- Apply Cr foil to protect ¹⁹F
- No material loss after 200 C proton bombardment

L.Y. Zhang *et al.*, Nucl. Instr. Meth. B 438 (2019) 48 L.Y. Zhang *et al.*, Nucl. Instr. Meth. B 496 (2021) 9

JUNA: Jinping Underground Nuclear Astrophysics experimental facility

People in our group

Nuclear Astrophysics group in Beijing Normal University(BNU): Prof. Jianjun He (Group leader:) Prof. Jun Su Associate Prof. Liyong Zhang Postdoctor Xinyue Li

Hao Zhang

Yaode Sheng

Zhilin Sheng and Shen Lin

Xin Chen

From left to right: Fuqiang Cao, Long Zhang, Zhicheng Zhang, Xinyue Li, Luohuan Wang, Liyong Zhang, Jianjun He, Jun Su, Xinzhi Jiang, Luyang Song, Ziming Li, and Yinji Chen

¹⁹F(p,γ)²⁰Ne: Experimental setup

 γ rays absorbed by the crystal, produce free electrons

¹⁹F(p,γ)²⁰Ne: Coincidence method

- Most transition decays via the 1.63 MeV state ullet
- Coincidence between the 'sum' and 'single' ulletenergy further reduced the background

7.117

6.917

6.130

6.049

0.0

¹⁹F(p,γ)²⁰Ne: A new resonance

- The ¹⁹F(p, γ)²⁰Ne reaction was measured to the lowest energy of $E_{c.m.}$ =186 keV
- A new resonance at 225 keV was observed for the first time
- R-Matrix analyze was applied to get full energy region data

Reproduce the observed ⁴⁰Ca abundance

New reaction rate:

- 7.4 times larger than previous estimation
- 3 times more precise

L.Y. Zhang, J.J. He, R. J. deBoer *et al.*, Nature **610** 656 (2022)

Astrophysical influences:

- Reproduced the observed ⁴⁰Ca abundance, and may reveal the nature of calcium production
- Support the *faint* supernova model

The fluorine overabundance problem

The ¹⁹F(p, $\alpha\gamma$)¹⁶O measurement

- ¹⁹F could be produced in AGB stars
- The observed ¹⁹F abundance is much higher than calculated ones
- Need to precisely measure the ¹⁹F(p,αγ)¹⁶O reaction cross section

Asymptotic Giant Branch, AGB star

¹⁹F(p,αγ)¹⁶O reaction in AGB stars

Destruct Reactions:

- ¹⁹F(p, α)¹⁶O
- ¹⁹F(α, p)²²Ne
- ¹⁹F(p, γ)²⁰Ne

¹⁹F(p,αγ)¹⁶O: Fluorine over abundance problem

- Focused on the 6.130 MeV transition
- More sensitive to target contaminations

First measurement in the Gamow window

- First measurement in Gamow window of AGB stars
- Uncertainty was reduced by 10³
- Clarified the contribution of $(p, \alpha \gamma)$ channel

L.Y. Zhang, J. Su, J.J. He *et al.*, Phys. Rev. Lett. 127(2021)152702

L.Y. Zhang, J. Su, J.J. He *et al.*, Phys. Rev. C. 106, 055803 (2022)

¹⁹F(p, α_0)¹⁶O: Dominate at low energies

$^{19}F(p,\alpha_0)^{16}O:$

- Measured in above-ground lab (HINEG, High Intensity DT fusion Neutron Generator)
- 3 mA proton beam + stable ¹⁹F targets
- Position sensitive silicon detectors
 Water cooled holder

- Lowest energy region
- R-matrix analyzing in progress
- No resonance was observed, the (p,α_0) channel contribution may be reduced

- First stars formed out of the matter of the Big Bang
- Hydrogen were burned via CNO cycles, and ⁴⁰Ca could be produce via the ¹⁹F(p,γ)²⁰Ne breakout reaction
- A new resonance at $E_{c.m.}$ =225 keV were found in JUNA
- The new rate can reproduce the observed Ca abundance of the first stars
- Our results strongly support the faint supernova model
- The ¹⁹F(p, $\alpha\gamma$)¹⁶O and ¹⁹F(p, α_0)¹⁶O reaction were also measured, which are critical for the fluorine over abundance problem in AGB stars

Thank you