THE IMPACT OF SYSTEMATIC AND STATISTICAL NUCLEAR UNCERTAINTIES ON THE R-PROCESS AND I-PROCESS NUCLEOSYNTHESIS

SÉBASTIEN MARTINET

CO-AUTHORS: ARTHUR CHOPLIN, STÉPHANE GORIELY, LIONEL SIESS

Experimentally known masses vs r-process network needed

Experimentally known masses vs r-process network needed

Experimentally known masses vs r-process network needed

Experimentally known masses vs r-process network needed

THE IMPACT OF SYSTEMATIC AND STATISTICAL NUCLEAR UNCERTAINTIES ON THE R- AND I-PROCESS NUCLEOSYNTHESIS In Second Statistics

Systematic/Model uncertainties

Overestimating uncertainties

I-process in early AGB phase

I-process in early AGB phase

I-process in early AGB phase

I-process in early AGB phase

THE IMPACT OF SYSTEMATIC AND STATISTICAL NUCLEAR UNCERTAINTIES ON THE R- AND I-PROCESS NUCLEOSYNTHESIS Martinet

Systematic/Model

Model Uncertainties vs Parameters Uncertainties

Overestimating uncertainties

Common misuse of model uncertainties:

Z,N-2	Z,N-1	Z,N
<ov>Model A</ov>	<ov>Model B</ov>	<ov>Model C</ov>

Trying to maximize the nuclear reaction rates by using values from different nuclear models leads to physical incompatibilities inside a network

→ Model uncertainties are <u>correlated</u>

Model Uncertainties vs Parameters Uncertainties

Overestimating uncertainties

Correct use of parameter uncertainties:

Z,N-2	Z,N-1	Z,N
max(<ov>Model A)</ov>	min(<ov>Model A)</ov>	mean(<ov>Model A)</ov>

or

Z,N-2	Z,N-1	Z,N
max(<σv> _{Model B})	random(<σv> _{Model B})	random(<ov>Model B</ov>

<70> Rate

These are possible combinations to use with the parameter uncertainties. Any value of these uncertainties can be combined for a same nuclear model.

→ Parameter uncertainties are <u>non-correlated</u>

Determining coherently parameter uncertainties

Choosing parameter uncertainties arbitrarily

How to obtain parameter uncertainties?

Uncorrelated MC approach (Mumpower+2016, Surman+2016, Nikas+2020, Jiang+21)

Neglect correlations between uncertainties

Overestimates impact

THE IMPACT OF SYSTEMATIC AND STATISTICAL NUCLEAR UNCERTAINTIES ON THE R- AND I-PROCESS NUCLEOSYNTHESIS In Selection Mortinet

Choosing arbitrarily an uncertainty for each or all nuclei

The Backward-Forward Monte Carlo approach

Goriely & Capote 2014

1st Step: Computing masses for random sets of parameters for one nuclear model (HFB-24)

				-											
	\mathbf{Z}	Ν	Α	1	2	3	4		11014	11015	11016	11019	11020	11021	11022
	8	10	18	0.88	0.95	0.93	0.94		0.88	0.86	0.97	0.83	0.90	1.00	0.94
1	8	11	19	5.14	5.14	5.22	5.24		5.07	5.16	5.20	5.11	5.15	5.21	5.20
	8	12	20	3.23	3.29	3.24	3.27		3.18	3.16	3.36	3.16	3.23	3.33	3.21
	8	13	21	9.11	9.11	9.15	9.17		9.01	9.08	9.15	9.12	9.09	9.19	9.08
6424	8	14	22	9.45	9.48	9.46	9.48	•••	9.37	9.36	9.46	9.46	9.39	9.55	9.37
nuclei		•••						•••							
nacici	110	246	356	533.09	534.80	532.17	530.81		532.92	529.74	531.01	533.00	527.89	533.04	530.81
	110	247	357	540.31	542.02	539.73	538.48		539.98	537.68	538.38	540.28	535.53	540.06	538.67
	110	248	358	548.11	549.85	547.17	545.78	•••	547.96	544.72	545.94	548.04	542.80	548.04	545.79
	110	249	359	555.79	557.52	555.18	553.90		555.49	553.08	553.74	555.79	550.88	555.53	554.09
•	110	250	360	564.04	565.79	563.09	561.66		563.91	560.61	561.80	564.00	558.63	563.94	561.69

11022 random combinations

The Backward-Forward Monte Carlo approach

Goriely & Capote 2014

1st Step: Computing masses for random sets of parameters for one nuclear model (HFB-24)

	\mathbf{Z}	Ν	А	1	2	3	4	•••	11014	11015	11016	11019	11020	11021	11022
	8	10	18	0.88	0.95	0.93	0.94		0.88	0.86	0.97	0.83	0.90	1.00	0.94
1	8	11	19	5.14	5.14	5.22	5.24		5.07	5.16	5.20	5.11	5.15	5.21	5.20
	8	12	20	3.23	3.29	3.24	3.27		3.18	3.16	3.36	3.16	3.23	3.33	3.21
	8	13	21	9.11	9.11	9.15	9.17		9.01	9.08	9.15	9.12	9.09	9.19	9.08
6424	8	14	22	9.45	9.48	9.46	9.48	•••	9.37	9.36	9.46	9.46	9.39	9.55	9.37
nuclei		•••			•••			•••			•••				
Πάζιξη	110	246	356	533.09	534.80	532.17	530.81		532.92	529.74	531.01	533.00	527.89	533.04	530.81
	110	247	357	540.31	542.02	539.73	538.48		539.98	537.68	538.38	540.28	535.53	540.06	538.67
	110	248	358	548.11	549.85	547.17	545.78	•••	547.96	544.72	545.94	548.04	542.80	548.04	545.79
	110	249	359	555.79	557.52	555.18	553.90		555.49	553.08	553.74	555.79	550.88	555.53	554.09
	110	250	360	564.04	565.79	563.09	561.66	•••	563.91	560.61	561.80	564.00	558.63	563.94	561.69

2nd Step: Checking if each parameter set as a rms for the known nuclei compatible with the experimental rms and discard the rest

THE IMPACT OF SYSTEMATIC AND STATISTICAL NUCLEAR UNCERTAINTIES ON THE R- AND I-PROCESS NUCLEOSYNTHESIS Advection

Anchor values to experimental uncertainties

The Backward-Forward Monte Carlo approach

Goriely & Capote 2014

1st Step: Computing masses for random sets of parameters for one nuclear model (HFB-24)

	\mathbf{Z}	Ν	А	1	2	3	4	•••	11014	11015	11016	11019	11020	11021	11022
	8	10	18	0.88	0.95	0.93	0.94		0.88	0.86	0.97	0.83	0.90	1.00	0.94
1	8	11	19	5.14	5.14	5.22	5.24		5.07	5.16	5.20	5.11	5.15	5.21	5.20
	8	12	20	3.23	3.29	3.24	3.27		3.18	3.16	3.36	3.16	3.23	3.33	3.21
	8	13	21	9.11	9.11	9.15	9.17		9.01	9.08	9.15	9.12	9.09	9.19	9.08
6424	8	14	22	9.45	9.48	9.46	9.48	•••	9.37	9.36	9.46	9.46	9.39	9.55	9.37
nuclei		•••													
nacter	110	246	356	533.09	534.80	532.17	530.81		532.92	529.74	531.01	533.00	527.89	533.04	530.81
	110	247	357	540.31	542.02	539.73	538.48		539.98	537.68	538.38	540.28	535.53	540.06	538.67
	110	248	358	548.11	549.85	547.17	545.78		547.96	544.72	545.94	548.04	542.80	548.04	545.79
	110	249	359	555.79	557.52	555.18	553.90		555.49	553.08	553.74	555.79	550.88	555.53	554.09
	110	250	360	564.04	565.79	563.09	561.66	•••	563.91	560.61	561.80	564.00	558.63	563.94	561.69

2nd Step: Checking if each parameter set as a rms for the known nuclei compatible with the experimental rms and discard the rest

 \rightarrow Using the remaining sets of parameters compatible with experiments to obtain the uncertainties on unknown masses

THE IMPACT OF SYSTEMATIC AND STATISTICAL NUCLEAR UNCERTAINTIES ON THE R- AND I-PROCESS NUCLEOSYNTHESIS Mortinet

Anchor values to experimental uncertainties

Determining coherently parameter uncertainties

Parameters uncertainties obtained from the BFMC method

Determining coherently parameter uncertainties

Parameters uncertainties obtained from the BFMC method

Radiative Neutron Capture Rates

Systematic/Model Uncertainties (Correlated)

Radiative Neutron Capture Rates

Determining coherently parameter uncertainties

Parameters uncertainties obtained from the BFMC method

Determining coherently parameter uncertainties

Parameters uncertainties obtained from the BFMC method

(n,g) rates uncertainties for the i-process

Effect of statistical uncertainties on the surface enrichment of early AGB stars (Martinet+2024a)

THE IMPACT OF SYSTEMATIC AND STATISTICAL NUCLEAR UNCERTAINTIES ON THE R- AND I-PROCESS NUCLEOSYNTHESIS Mortinet

Maximum and minimum (n,g) theoretical rates (862 nuclei) (with 4-parameter variation s.t. $f_{rms} \le 2.0$)

 \rightarrow Random combination of maximum and minimum rates for a large number of stellar models (n>50)

2)	3)	•••••	862)
32(n,g)	Si32(n,g)		Pu252(n,g)
Max	Min	•••••	Min
Max	Min	•••••	Max
Min	Min	•••••	Max
••••	••••	•••••	••••
Min	Max	•••••	Min

Effect of statistical uncertainties on the surface enrichment of early AGB stars (Martinet+2024a)

Effect of statistical uncertainties on the surface enrichment of early AGB stars (Martinet+2024a)

Effect of statistical uncertainties on the surface enrichment of early AGB stars (Martinet+2024a)

Non-correlated parameter uncertainties

Identify important (n,g) reactions during the i-process in AGB stars (Martinet+2024a)

Impact of the Ba139(n,g) reaction rate to the La139 abundance

Nd 141	Nd 142	Nd 143	Nd 144	Nd 145	Nd 146	Nd 147	Nd 148	Nd 149	Nd 150	Nd 151	Nd 152	Nd 153	Nd 154	Nd 155	Nd 156
2.49 h	27.152	12.174	23.798	8.293	17.189	10.98 d	5.756	1.728 h	5.638	12.44 m	11.4 m	31.6 s	25.9 s	8.9 s	5.06 s
Pr 140 3.39 m	Pr 141	Pr 142	Pr 143 13.57 d	Pr 144 17.28 m	Pr 145 5.984 h	Pr 146 24.15 m	Pr 147 13.4 m	Pr 148 2.29 m	Pr 149 2.26 m	Pr 150 6.19 s	Pr 151 18.90 s	Pr 152 3.57 s	Pr 153 4.28 s	Pr 154 2.3 s	Pr 155 1.47 s
Ce 139	Ce 140	Ce 141	Ce 142	Ce 143	Ce 144	Ce 145	Ce 146	Ce 147	Ce 148	Ce 149	Ce 150	Ce 151	Ce 152	Ce 153	Ce 154
137.641 d	88.450	32.511 d		33.039 h	284.91 d	3.01 m	13.52 m	56.4 s	56.8 s	4.94 s	6.05 s	1.76 s	1.42 s	865 ms	722 ms
La 138	La 139	La 140	La 141	La 142	La 143	La 144	La 145	La 146	La 147	La 148	La 149	La 150	La 151	La 152	La 153
0.08881	99.91119	40.285 h	3.92 h	91.1 m	14.2 m	40.8 s	24.8 s	6.27 s	4.06 s	1.35 s	1.07 s	^{504 ms}	465 ms	287 ms	245 ms
Ba 137	Ba 138	Ba 139	Ba 140	Ba 141	Ba 142	Ba 143	Ba 144	Ba 145	Ba 146	Ba 147	Ba 148	Ba 149	Ba 150	Ba 151	Ba 152
11.232	71.698	83.13 m	12.7527 d	18.27 m	10.6 m	14.5 s	11.5 s	4.31 s	2.22 s	894 ms	620 ms	^{348 ms}	259 ms	167 ms	139 ms
Cs 136 13.16 d	Cs 137 30.08	B631 33.41 m	3 <mark>9(</mark> 1	, 9)	Cs 141 24.84 s	Cs 142 1.684 s	Cs 143 1.791 s	Cs 144 994 ms	Cs 145 582 ms	Cs 146 323 ms	Cs 147 230 ms	Cs 148 145 ms	Cs 149 113 ms	Cs 150 84.4 ms	Cs 151 69 ms
Xe 135 9.14 h	Xe 136 8.8573	Xe 137 3.818 m	Xe 138	Xe 139 ^{39.68 s}	Xe 140 13.60 s	Xe 141 1.73 s	Xe 142 1.23 s	Xe 143 511 ms	Xe 144 388 ms	Xe 145 188 ms	Xe 146 146 ms	Xe 147 130 ms	Xe 148		96
l 134 52.5 m	l 135 6.58 h	I 136 83.4 s	I 137 24.13 s	l 138 6.23 s	I 139 2.282 s	140 860 ms	141 430 ms	142 222 ms	143 130 ms	1144	145		94		

THE IMPACT OF SYSTEMATIC AND STATISTICAL NUCLEAR UNCERTAINTIES ON THE R- AND I-PROCESS NUCLEOSYNTHESIS Martinet

 $\langle \sigma \rangle_{\rm max}^{10} / \langle \sigma \rangle_{\rm min}$

Identify important (n,g) reactions during the i-process in AGB stars (Martinet+2024a)

THE IMPACT OF SYSTEMATIC AND STATISTICAL NUCLEAR UNCERTAINTIES ON THE R- AND I-PROCESS NUCLEOSYNTHESIS Martinet

Nd 146	Nd 147	Nd 148	Nd 149	Nd 150	Nd 151	Nd 152	Nd 153	Nd 154	Nd 155	Nd 156
17.189	10.98 d	5.756	1.728 h	5.638	12.44 m	11.4 m	31.6 s	25.9 s	8.9 s	5.06 s
Pr 145	Pr 146 24.15 m	Pr 147	Pr 148	Pr 149	Pr 150	Pr 151	Pr 152	Pr 153	Pr 154	Pr 155
5.984 h		13.4 m	2.29 m	2.26 m	6.19 s	18.90 s	3.57 s	4.28 s	2.3 s	1.47 s
Ce 144	Ce 145	Ce 146	Ce 147	Ce 148	Ce 149	Ce 150	Ce 151	Ce 152	Ce 153	Ce 154
284.91 d	3.01 m	13.52 m	56.4 s	56.8 s	4.94 s	6.05 s	1.76 s	1.42 s	865 ms	722 ms
La 143	La 144	La 145	La 146	La 147	La 148	La 149	La 150	La 151	La 152	La 153
14.2 m	40.8 s	24.8 s	6.27 s	4.06 s	1.35 s	1.07 s	^{504 ms}	465 ms	^{287 ms}	245 ms
Ba 142	Ba 143	Ba 144	Ba 145	Ba 146	Ba 147	Ba 148	Ba 149	Ba 150	Ba 151	Ba 152
10.6 m	14.5 s	11.5 s	4.31 s	2.22 s	894 ms	620 ms	348 ms	259 ms	167 ms	139 ms
24.84 s	Cs 1 <mark>42</mark>	Cs 143	Cs 144	Cs 145	Cs 146	Cs 147	Cs 148	Cs 149	Cs 150	Cs 151
	1.68 4 s	1.791 s	994 ms	582 ms	323 ms	230 ms	145 ms	113 ms	84.4 ms	69 ms
Xe 140 13.60 s	Xe 141 1.73 s	Xe 142	Xe 143 511 ms	Xe 144 388 ms	Xe 145 188 ms	Xe 146 146 ms	Xe 147 130 ms	Xe 148		96
I 139 2.282 s	140 860 ms	141 430 ms	1 142 222 ms	1 143 130 ms	1144	1 145		94		

 $\langle \sigma \rangle_{\rm max}^{10} / \langle \sigma \rangle_{\rm min}$

Identify important (n,g) reactions during the i-process in AGB stars (Martinet+2024a)

THE IMPACT OF SYSTEMATIC AND STATISTICAL NUCLEAR UNCERTAINTIES ON THE R- AND I-PROCESS NUCLEOSYNTHESIS Martinet

Nd 146	Nd 147	Nd 148	Nd 149	Nd 150	Nd 151	Nd 152	Nd 153	Nd 154	Nd 155	Nd 156
17.189	10.98 d	5.756	1.728 h	5.638	12.44 m	11.4 m	31.6 s	25.9 s	8.9 s	5.06 s
Pr 145	Pr 146	Pr 147	Pr 148	Pr 149	Pr 150	Pr 151	Pr 152	Pr 153	Pr 154	Pr 155
5.984 h	24.15 m	13.4 m	2.29 m	2.26 m	6.19 s	18.90 s	3.57 s	4.28 s	2.3 s	1.47 s
Ce 144	Ce 145	Ce 146	Ce 147	Ce 148	Ce 149	Ce 150	Ce 151	Ce 152	Ce 153	Ce 154
284.91 d	3.01 m	13.52 m	56.4 s	56.8 s	4.94 s	6.05 s	1.76 s	1.42 s	865 ms	722 ms
La 143	La 144	La 145	La 146	La 147	La 148	La 149	La 150	La 151	La 152	La 153
14.2 m	40.8 s	24.8 s	6.27 s	4.06 s	1.35 s	1.07 s	^{504 ms}	465 ms	^{287 ms}	245 ms
Ba 142	Ba 143	Ba 144	Ba 145	Ba 146	Ba 147	Ba 148	Ba 149	Ba 150	Ba 151	Ba 152
10.6 m	14.5 s	11.5 s	4.31 s	2.22 s	894 ms	620 ms	348 ms	259 ms	167 ms	139 ms
24.84 s	CS 1 <mark>42</mark>	Cs 143	Cs 144	Cs 145	Cs 146	Cs 147	Cs 148	Cs 149	Cs 150	Cs 151
	1.68 4 s	1.791 s	994 ms	582 ms	323 ms	230 ms	145 ms	113 ms	84.4 ms	69 ms
Xe 140 13.60 s	Xe 141 1.73 s	Xe 142	Xe 143 511 ms	Xe 144 388 ms	Xe 145 188 ms	Xe 146 146 ms	Xe 147 130 ms	Xe 148		96
I 139 2.282 s	140 860 ms	141 430 ms	1 142 222 ms	1 143 130 ms	1144	1 145		94		

 $\langle \sigma \rangle_{\rm max}^{10} / \langle \sigma \rangle_{\rm min}$

Identify important (n,g) reactions during the i-process in AGB stars (Martinet+2024a)

Nd 146	Nd 147	Nd 148	Nd 149	Nd 150	Nd 151	Nd 152	Nd 153	Nd 154	Nd 155	Nd 156
17.189	10.98 d	5.756	1.728 h	5.638	12.44 m	11.4 m	31.6 s	25.9 s	8.9 s	5.06 s
Pr 145	Pr 146 24.15 m	Pr 147	Pr 148	Pr 149	Pr 150	Pr 151	Pr 152	Pr 153	Pr 154	Pr 155
5.984 h		13.4 m	2.29 m	2.26 m	6.19 s	18.90 s	3.57 s	4.28 s	2.3 s	1.47 s
Ce 144	Ce 145	Ce 146	Ce 147	Ce 148	Ce 149	Ce 150	Ce 151	Ce 152	Ce 153	Ce 154
284.91 d	3.01 m	13.52 m	56.4 s	56.8 s	4.94 s	6.05 s	1.76 s	1.42 s	865 ms	722 ms
La 143	La 144	La 145	La 146	La 147	La 148	La 149	La 150	La 151	La 152	La 153
14.2 m	40.8 s	24.8 s	6.27 s	4.06 s	1.35 s	1.07 s	^{504 ms}	465 ms	287 ms	245 ms
Ba 142	Ba 143	Ba 144	Ba 145	Ba 146	Ba 147	Ba 148	Ba 149	Ba 150	Ba 151	Ba 152
10.6 m	14.5 s	11.5 s	4.31 s	2.22 s	894 ms	620 ms	348 ms	259 ms	167 ms	139 ms
24.84 s	CS 1 <mark>42</mark>	Cs 143	Cs 144	Cs 145	Cs 146	Cs 147	Cs 148	Cs 149	Cs 150	Cs 151
	1.68 4 s	1.791 s	994 ms	582 ms	323 ms	230 ms	145 ms	113 ms	84.4 ms	69 ms
Xe 140 13.60 s	Xe 141	Xe 142 1.23 s	Xe 143 511 ms	Xe 144 388 ms	Xe 145 188 ms	Xe 146 146 ms	Xe 147 130 ms	Xe 148		96
I 139 2.282 s	140 860 ms	141 430 ms	1 142 222 ms	1 143 130 ms	1144	1 145		94		

 $\langle \sigma \rangle_{\rm max}^{10} / \langle \sigma \rangle_{\rm min}$

Identify important (n,g) reactions during the i-process in AGB stars (Martinet+2024a)

Identify important (n,g) reactions during the i-process in AGB stars (Martinet+2024a)

Identify important (n,g) reactions during the i-process in AGB stars (Martinet+2024a)

THE IMPACT OF SYSTEMATIC AND STATISTICAL NUCLEAR UNCERTAINTIES ON THE R- AND I-PROCESS NUCLEOSYNTHESIS Martinet

Frac.	Surf. abune	d. uncertainty (in log)	Reaction	$\langle \sigma \rangle_{\rm max}$	$/\langle \sigma \rangle_{\rm min}$
Ļ	set A	set B	ļ	set A	set B
51%	2.90	1.37	217 Bi(n, γ)	57.2	10.0
92%	2.87	1.80	217 Bi(n, γ)	57.2	10.0
00%	2.75	1.36	217 Bi(n, γ)	57.2	10.0
-1%	1.66	0.91	160 Tb(n, γ)	7.5	3.2
-1%	1.66	0.91	159 Gd(n, γ)	12.0	6.5
.5%	1.39	1.02	153 Sm(n, γ)	12.5	5.5
85%	1.34	1.95	137 Xe(n, γ)	11.6	8.4
85%	1.34	1.95	137 Cs(n, γ)	15.4	78.4
.5%	1.31	1.55	203 Hg(n, γ)	6.3	9.8
-4%	1.31	1.08	149 Nd(n, γ)	7.3	5.4
.5%	1.30	0.78	130 I(n, γ)	8.6	2.7
72%	1.24	0.95	121 Sn(n, γ)	9.4	4.5
.5%	1.20	1.01	148 Pm(n, γ)	8.9	3.1
.5%	1.20	1.01	147 Nd(n, γ)	10.5	9.5
56%	1.18	1.19	95 Zr(n, γ)	11.5	11.8
58%	1.17	0.62	188 W(n, γ)	8.6	3.2
-6%	1.17	1.58	135 Xe(n, γ)	5.1	7.6
-6%	1.17	1.58	136 Cs(n, γ)	6.8	14.2
82%	1.15	0.88	153 Sm(n, γ)	12.5	5.5
51%	1.14	1.17	147 Pr(n, γ)	11.9	9.8
51%	1.14	1.17	147 Nd(n, γ)	10.5	9.5
12%	1.10	0.71	¹¹¹ Pd(n, γ)	6.8	5.1
)0%	1.10	1.18	127 Sb(n, γ)	10.7	12.4
36%	1.10	0.99	¹⁴³ Ce(n, γ)	12.6	8.9
79%	1.07	0.85	¹⁴⁴ Ce(n, γ)	7.2	4.7
)0%	1.07	0.81	175 Yb(n, γ)	8.7	5.6
46%	1.07	0.84	200 Pt(n, γ)	11.3	5.6
30%	1.07	0.84	149 Nd(n, γ)	7.3	5.4
75%	1.07	0.93	106 Ru(n, γ)	8.0	4.3
18%	1.05	0.91	145 Pr(n, γ)	12.0	8.7
53%	1.04	0.68	194 Os(n, γ)	8.7	3.4

Martinet+2024

Identify important (n,g) reactions during the i-process in AGB stars (Martinet+2024a)

THE IMPACT OF SYSTEMATIC AND STATISTICAL NUCLEAR UNCERTAINTIES ON THE R- AND I-PROCESS NUCLEOSYNTHESIS Martinet

				84	
Frac.	Surface	abund. uncertainty (in log)	Reaction	$ \langle \sigma \rangle_{\max}$	$\langle \sigma \rangle_{\min}$
	set A	set B		set A	set B
-4%	0.49	0.31	86 Rb(n, γ)	5.3	2.2
-1%	0.01	0.00	86 Rb(n, γ)	5.3	2.2
99%	0.42	0.45	88 Kr(n, γ)	3.4	3.5
00%	0.92	0.78	89 Sr(n, γ)	7.6	8.4
43%	0.62	0.73	90 Sr(n, γ)	2.8	3.0
28%	0.88	1.12	91 Sr(n, γ)	8.2	11.9
25%	0.61	0.57	92 Sr(n, γ)	4.0	3.9
24%	0.49	0.48	94 Y(n, γ)	10.0	3.7
.5%	0.49	0.55	134 Cs(n, γ)	8.0	6.3
-6%	1.17	1.58	135 Xe(n, γ)	5.1	7.6
-6%	1.17	1.58	136 Cs(n, γ)	6.8	14.2
85%	1.34	1.95	137 Xe(n, γ)	11.6	8.4
85%	1.34	1.95	137 Cs(n, γ)	15.4	78.4
80%	0.66	0.52	138 Cs(n, γ)	7.0	4.8
00%	0.59	0.77	¹³⁹ Ba(n, γ)	10.3	9.0
90%	0.78	0.86	¹⁴⁰ Ba(n, γ)	3.2	4.3
73%	0.54	0.51	142 La(n, γ)	7.8	3.4
00%	0.97	0.96	¹⁴¹ La(n, γ)	11.1	10.0
.5%	0.68	0.30	142 Pr(n, γ)	12.6	3.1
36%	1.10	0.99	¹⁴³ Ce(n, γ)	12.6	8.9
79%	1.07	0.85	¹⁴⁴ Ce(n, γ)	7.2	4.7
18%	1.05	0.91	145 Pr(n, γ)	12.0	8.7
13%	0.34	0.38	149 Nd(n, γ)	7.3	5.4
51%	1.14	1.17	¹⁴⁷ Pr(n, γ)	11.9	9.8
51%	1.14	1.17	147 Nd(n, γ)	10.5	9.5
.5%	1.20	1.01	¹⁴⁸ Pm(n, γ)	8.9	3.1
.5%	1.20	1.01	147 Nd(n, γ)	10.5	9.5
30%	1.07	0.84	149 Nd(n, γ)	7.3	5.4
-4%	1.31	1.08	149 Nd(n, γ)	7.3	5.4
85%	1.04	0.83	151 Pm(n, γ)	8.6	6.1
82%	1.15	0.88	153 Sm(n, γ)	12.5	5.5

Martinet+2024

Importance of using multiple trajectories representing the whole NSM event

THE IMPACT OF SYSTEMATIC AND STATISTICAL NUCLEAR UNCERTAINTIES ON THE R- AND I-PROCESS NUCLEOSYNTHESIS In Selbastien Mortinet

Multiple trajectories

358 trajectories representing the total ~2500 trajectories

Importance of using multiple trajectories representing the whole NSM event

THE IMPACT OF SYSTEMATIC AND STATISTICAL NUCLEAR UNCERTAINTIES ON THE R- AND I-PROCESS NUCLEOSYNTHESIS Martinet

→ However, photodissociation reaction rates depend exponentially on the separation energy Sn

Anti-correlation of Sn and Qb, and coherent masses (Martinet & Goriely subm..)

Anti-correlation of Sn and Qb, and coherent masses (Martinet & Goriely subm..)

Model uncertainties vs Parameter uncertainties (Martinet & Goriely subm..)

THE IMPACT OF SYSTEMATIC AND STATISTICAL NUCLEAR UNCERTAINTIES ON THE R- AND I-PROCESS NUCLEOSYNTHESIS Martinet

Model uncertainties vs Parameter uncertainties (Martinet & Goriely subm..)

THE IMPACT OF SYSTEMATIC AND STATISTICAL NUCLEAR UNCERTAINTIES ON THE R- AND I-PROCESS NUCLEOSYNTHESIS Martinet

Model uncertainties vs Parameter uncertainties (Martinet & Goriely subm..)

The impact of Systematic and Statistical nuclear uncertainties on the i-process nucleosynthesis

The impact of Systematic and Statistical nuclear uncertainties on the i-process nucleosynthesis

The impact of Systematic and Statistical nuclear uncertainties on the i-process nucleosynthesis

The impact of Systematic and Statistical nuclear uncertainties on the i-process nucleosynthesis

The impact of Systematic and Statistical nuclear uncertainties on the r-process nucleosynthesis

Systematic and Statistical nuclear uncertainties

The impact of Systematic and Statistical nuclear uncertainties on the r-process nucleosynthesis

The impact of Systematic and Statistical nuclear uncertainties on the r-process nucleosynthesis

uncertainties from Mass and from Sn

uncertainties

The impact of Systematic and Statistical nuclear uncertainties on the r-process nucleosynthesis

Different cases to be considered between uncertainties from Mass and from Sn

THE IMPACT OF SYSTEMATIC AND STATISTICAL NUCLEAR UNCERTAINTIES ON THE R- AND I-PROCESS NUCLEOSYNTHESIS In Mortinet

Impact on r-process nucleosynthesis in Neutron Star Mergers

Multiple trajectories needed to represent the real impact of nuclear uncertainties.

Mostly affects abondances of nuclei with A > 135. Model uncertainties leads to larger uncertainties on abondances than parameter ones

Radiative Neutron Capture Rates - Parameters uncertainty range constrain by experimental uncertainties

Correlated model uncertainties

Compatibility with experiment uncertainties

Compatibility with experiment uncertainties

Radiative Neutron Capture Rates - Parameters uncertainty range constrain by model uncertainties

SYSTEMATIC AND STATISTICAL NUCLEAR UNCERTAINTIES ON THE R- AND I-PROCESS NUCLEOSYNTHESIS THE IMPACT

Radiative Neutron Capture Rates - Extension to non-experimental (n,g) reactions

Effect of statistical uncertainties on the surface enrichment of early AGB stars

THE IMPACT OF SYSTEMATIC AND STATISTICAL NUCLEAR UNCERTAINTIES ON THE R- AND I-PROCESS NUCLEOSYNTHESIS Mortinet

Maximum and minimum (n,g) theoretical rates (862 nuclei) (with 4-parameter variation s.t. $f_{rms} \le 2.0$)

 \rightarrow Random combination of maximum and minimum rates for a large number of stellar models (n>50)

2)	3)	862)	
32(n,g)	Si32(n,g)		Pu252(n,g)
Max	Min	•••••	Min
Max	Min	•••••	Max
Min	Min	•••••	Max
••••	••••	•••••	••••
Min	Max	•••••	Min

Update to Bruslib and NetGen

Updates of mass model for Brusslib

 \rightarrow New reactions updated (e.g. $^{12}C+^{12}C)$

 \rightarrow Plan for regular updates integrating ChaNUREPS entries

Masses updated with new mass model BSkg3 (Grams+2023), density, potentials, ... will be updated too

- GS deformation
- Stiff EoS

http://www.astro.ulb.ac.be/Netgen/

• Triaxiality, time-reversal symmetry breaking & octupole

• Microscopic pairing from "realistic" calculations

• Accurate masses: s(2457M)=0.63MeV • Accurate fission barriers s(45B f)=0.33MeV including triaxial & octupole deformations simultaneously

http://www.astro.ulb.ac.be/bruslib/

Nuclear uncertainties on NSM simulations **+**

Q for various Cases

Nuclear models

Nuclear inputs

"Microscopic" approach is a necessary but not a sufficient condition ! "(Semi-)Microscopic" models must be competitive in reproducing exp. data !

Nuclear models

Nuclear inputs

New HFB nuclear mass models

- New Gogny-HFB mass model: D3G3M •
 - Gogny interaction with 3 Gaussians
 - Stiffer EoS than D1M
 - Accurate masses: $\sigma(2457M)=0.87$ MeV . Batail et al. (2024)
- New Syrme-HFB mass model: BSkG3 •
 - Triaxiality, time-reversal symmetry breaking & octupole GS deformation
 - Microscopic pairing from "realistic" • calculations
 - Stiff EoS •
 - Accurate masses: $\sigma(2457M)=0.63$ MeV ٠
 - Accurate fission barriers $\sigma(45B_f)=0.33$ MeV including triaxial & octupole deformations simultaneously

Grams et al. (2023)

100 80 Proton number 60

energy/nucleon [MeV]

500

400

300

200

100

