

The Compton Spectrometer and Imager Science Goals and Mission Status

John Tomsick (COSI Principal Investigator) University of California, Berkeley Space Sciences Laboratory

NPA-XI, Dresden, Germany September 17, 2024

COSI overview

- COSI is a NASA Small Explorer (SMEX) satellite with a planned launch in 2027
- □ Detects gamma-rays in the 0.2-5 MeV energy range
- Optimized for studies of nuclear and annihilation emission lines across our Galaxy
- Uses germanium detectors cooled to cryogenic temperatures to provide *excellent energy resolution*
- □ Instantaneous field of view is *>25%-sky* and covers the whole sky every day

Upcoming SMEX mission operating in the energy range between NuSTAR and Fermi/LAT

The MeV gap

- Previous and current missions have had relatively poor sensitivity in the MeV range
- Discovery space where there is known to be interesting physics
 - Antimatter annihilation line at 511 keV
 - Nuclear lines from unstable products of element formation
 - Accreting black holes
 - Multimessenger astrophysics

Compton telescopes:

- COMPTEL on CGRO (1991-2000)
- COSI is a new type of Compton Telescope

Key science goals

Revealing Galactic element formation

COSI investigates element creation related to massive stars

Stellar-interior nucleosynthesis

Stellar-explosion nucleosynthesis in supernovae (SN)

Compact

remnant

NS/BH

SN II

Three windows on chemical enrichment of the Galaxy

 \Box ²⁶Al (t_{1/2} 717 kyr) traces massive stars, providing an all-Galaxy view of **SN progenitors**

²⁶Al and ⁶⁰Fe

COMPTEL ²⁶Al map (Oberlack+96)

COSI simulation of the Cygnus region at 1.809 MeV after 2 yr

- >7x better sensitivity
- >2x better angular resolution

Modeling ²⁶Al with Population SYNthesis COde (PSYCO; Siegert+23) Simulation includes degrading to COMPTEL's angular resolution (SFR = 4-8 M_{sun}/yr , 1.8-2.8 SNe/century, $M_{26Al} = 1.2-2.4 M_{sun}$, $M_{60Fe} = 1-6 M_{sun}$)

- □ Comparing COSI's ²⁶Al and ⁶⁰Fe images to PSYCO predictions will constrain, e.g.:
 - Nucleosynthesis yields per stellar mass
 - Mass loss in winds (related to stellar metallicity)
 - Stellar explodability (which stars produce SNe?)
 - Stellar rotation (Monday talk by Artemis Spyrou)

Using ⁴⁴Ti to trace ejection velocities

- □ The ⁴⁴Ti decay chain produces lines at 68 and 78 keV (NuSTAR) and 1.157 MeV (COSI)
- NuSTAR observations
 - Cas A: ⁴⁴Ti lines redshifted by 1100-3000 km/s
 - SN 1987A: ⁴⁴Ti line redshifted by ~700 km/s
 - Evidence for asymmetric explosions but there are only measurements for these two cases

COSI

- Search for more with a Galactic survey at 1.157 MeV
- Spectroscopy to measure widths of lines and Doppler shifts

Cas A with NuSTAR (Grefenstette+14+17)

SN 1987A with NuSTAR (Boggs+15)

Uncovering the origin of Galactic positrons

- □ COSI traces positrons by measuring the 511 keV e⁻e⁺ annihilation line
- □ Current questions:
 - What is producing the ~5x10⁴³ e⁺/s required to explain the 511 keV signal?
 - What is the reason for the strong excess coming from the Galactic bulge?

Positron Production Rates (x10⁴² e⁺/s)

Siegert 17 and Siegert 23: "The Positron Puzzle"

Source	Galaxy	Bulge	Disk
²⁶ Al+ ⁴⁴ Ti	5.6±0.3	0.57±0.03	4.9±0.3
Observed	49±15	18.0±0.2	31±15
% explained by ²⁶ AI+ ⁴⁴ Ti	11%±3%	3.2%±0.3%	16%±6%

INTEGRAL/SPI map of the 511 keV emission

COSI will:

- Search for substructure in the bulge emission (individual sources?)
- Measure the disk scale-height
- Correlation with ²⁶Al

511 keV Galactic substructure

Candidate Positron Sources

Type of Source	Source	
	²⁶ Al from stellar winds	
Nucleosynthesis products	²⁶ Al & ⁴⁴ Ti from CCSNe	
	⁵⁶ Ni/ ⁵⁶ Co from Type Ia SNe	
	¹³ N, ¹⁸ F, ²² Na from novae	
	Low-mass X-ray binaries	
	Microquasars	
	Sgr A*	
	Active stars	
	Pulsar winds	
	Gamma-ray bursts	
	Neutron star mergers	
	Annihilating MeV DM	
Dark matter	Decaying heavy DM	
	Primordial black holes	

□ 511 keV imaging of the Galaxy with COSI

- Compare to observed distributions
- Compare to theoretical distributions
- Look for individual sources

Contributions

are highly uncertain

Measurement requirements for emission line goals

Characteristic	Requirement
Sky Coverage	>25%-sky instantaneous FOV100%-sky each day
Energy Resolution* (FWHM)	 <1.2% @ 0.511 MeV <0.8% at 1.157 MeV (⁴⁴Ti)
Narrow Line Sensitivity (2 yr, 3σ, point source)	[photons cm ⁻² s ⁻¹] • 1.2x10 ⁻⁵ @ 0.511 MeV • 3.0x10 ⁻⁶ @ ²⁶ Al, ⁶⁰ Fe, and ⁴⁴ Ti
Angular Resolution (FWHM)	 <4.1° @ 0.511 MeV <2.1° @ 1.8 MeV (²⁶Al)

*Notes on energy resolution:

- For fully reconstructed Compton events (average of 2.5 interactions) ۲
- 1.157 MeV requirement is <0.8% FWHM; capability estimate ~0.4-0.5% ۲

56Co

26AI

⁶⁰Fe

Level that COSI is required to meet during its 2-year prime mission, but could do substantially better if mission is extended

Mission comparison

Mission (Instrument) Operation		Energy Range	Field of View	Energy Resolution
COSI	2027-	200 keV – 5 MeV	~ 10,000 deg ²	0.4-1.2% (>200 keV, est.)
CGRO (COMPTEL)	1991-2000	800 keV – 30 MeV	~3000 deg ²	5-10% (>1 MeV)
INTEGRAL (SPI)	2002-	25 keV – 8 MeV	~300 deg ²	0.2-1.6% (>100 keV)
NuSTAR	2012-	3-78 keV	0.05 deg ²	1.3-4.0% (>10 keV)

□ COSI will reach the sensitivities shown for every source in the sky

□ COSI's extended science portfolio includes detecting the 847 keV line from Type Ia SNe out to ~20 Mpc (~two per year)

□Survey mode

- North/South zenith offset alternating every 12 hours (8 orbits)
- Combined with large field of view gives daily all-sky coverage
- □ Time to observe a transient event in survey mode
 - >25% of sources seen instantaneously
 - ■>50% within 90 mins
 - 100% within 13.5 hrs

Classical novae

Studying thermonuclear explosions on accreting white dwarfs combine*:

- Laboratory measurements (nuclear lifetimes)
- Hydrodynamic simulations (elemental yields)
- ■Gamma-ray observations (¹³N, ¹⁸F, ²²Na, ⁷Be)
- Predicted 511 keV line from ¹³N and ¹⁸F will be detectable by COSI out to ~2 kpc
 Expect a nova at <2 kpc every 2 yr
- Predicted 1275 keV line from ²²Na will be detectable by COSI out to ~3 kpc
 Expect an ONe nova at <3 kpc every 3-9 yr

*See, e.g., Fougères+23, Nature, arXiv:2212.06302 (see poster 138)

Solar science

In survey mode, COSI will obtain ~6 hrs of solar coverage per day

Previous nuclear line detections are listed in the table below

Isotope	Mechanism	Gamma-ray energies (keV)
² H	Neutron capture	2223
¹² C, ¹⁶ O, ²⁴ Mg, ²⁰ Ne, ²⁸ Si	p/alpha collision and de-excitation	1369, 1634, 1779, 4438, 6129
⁷ Be, ⁷ Li	alpha-⁴He	400-500

 e^{+}/e^{-} (511 keV) and ⁵⁶Fe (847 keV) also detected; Shih+03, Smith+03, Share+03, Shih+09

Do small flares accelerate ions?

COSI has the line sensitivity to measure ions in much smaller flares than RHESSI (figure from Shih+09)

Nuclear lines from solar flares are a signature of ion acceleration

The COSI collaboration

University of California, Berkeley University of California, San Diego Naval Research Laboratory Goddard Space Flight Center Space Dynamics Laboratory Northrop Grumman Italian Space Agency (ASI) German Aerospace Center (DLR) French National Space Agency (CNES)

Institutions of Co-Investigators and Collaborators

- Clemson University
- Louisiana State University
- Los Alamos National Laboratory
- Lawrence Berkeley National Laboratory
- IRAP, France
- INAF, Italy
- Kavli IPMU and Nagoya University, Japan
- JMU/Würzburg and JGU/Mainz, Germany

- NTHU, Taiwan
- University of Hertfordshire, UK
- Centre for Space Research, North-West University, South Africa
- Deutsches Elektronen Synchrotron (DESY), Germany
- LAPTh-CNRS, France
- Yale University
- Michigan Technical University
- Washington University, St. Louis

- Marshall Space Flight Center
- Boston University
- IAA-CSIC, Spain
- Stanford University

COSI mission timeline and observatory parameters

Original2019 AstrophysicsOriginalSmall ExplorerProposal(SMEX) with \$145MOpportunitycost cap (FY20\$),excluding launch		Solar Array (Northrop Grumman)	Payload (UCB) 156 cm	
Phase A start	March 2020		Spacecraft (NG)	
Phase B start	January 2022			
Phase C start	April 2024	←		
Planned Launch	August 2027	108 cm COSI Mass, Power, and Data		
Launch Vehicle	Space X Falcon 9	Mass (372 kg Not to Exceed)	350 kg (Maximum Expected Value, MEV)	
	530 km altitude	Power (732 W generated by Solar Array w/ battery storage)	609 W MEV (including battery recharge and other inefficiencies)	
Orbit	<2 deg inclination (for low background)	Data (through Malindi Ground Station, provided by ASI)	7.7 Gb/day S-band	
Prime Mission Duration	2 years	Data (through Tracking and Data Relay Satellite System, TDRSS)	4 kbps S-band GRB Data: 500 kb per alert	

Nuclear Physics in Astrophysics XI – John Tomsick

COSI

A Gamma-ray Space Explorer

Payload design

Hardware: Engineering models and testing

- EM (and some FM) hardware being built and tested at:
 - UCB/SSL
 - NRL
 - SDL
 - LBNL
 - GSFC
 - Northrop Grumman

EM bottom shield (~40cmx40cm)

EM HVPS

Mission status and how you can get involved

□ Recent past and near future

- Completed Preliminary Design Review (PDR) in February 2024
- Launch vehicle selected (SpaceX Falcon 9) in July 2024
- **Next:** Critical Design Review (CDR) coming up in Nov/Dec 2024

□ How you can get involved

- Yearly public "data challenges" (<u>github.com/cositools/cosi-data-challenge-2</u>)
- Developing ideas for additional nuclear physics investigations with COSI
 - Interested in discussing connections to lab/beamline/theory/simulations

2024 2025 2026 2027 Q3 Q2 Q3 Q2 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q4 Payload CDR (11/7/24) 🔷 ORR (5/31/27) 🔷 Milestones Payload PSR (9/14/26) 🔷 ♦ FRR (8/6/27) Program Mission CDR (12/6/24) Obsv. PSR (6/30/27) SIR (9/28/26) LRD Launch (8/27/27) 1.0 PER (11/6/26) PLAR (9/30/27) KDP-C (4/16/24) SRII (1/15/25) 🔷 KDP-D (10/26/26) 🔷 ♦ KDP-E (8/6/27) SRIII (4/8/27) Now FM builds **Observatory I&T** Payload Integration & Testing LAUNCH!

COS

2028

Q1

cosi.ssl.berkeley.edu

COSI science team (99 members in total)

Subgroup	Lead	Co-Leads
Positrons	Carolyn Kierans (GSFC)	Thomas Siegert (JMU, Germany)
Nucleosynthesis	Thomas Siegert (JMU, Germany)	Chris Fryer (LANL)
GRBs	Eric Burns (LSU)	Steve Boggs (UCSD), Dieter Hartmann (Clemson)
Galactic	Julien Malzac (IRAP, France)	Chris Karwin (GSFC)
Extragalactic	Marco Ajello (Clemson)	Fabrizio Tavecchio (INAF, Italy)
Dark Matter	Tad Takahashi (IPMU, Japan)	Fabrizio Tavecchio (INAF, Italy), Shigeki Mastumoto and Tom Melia (IPMU, Japan)

□ Nucleosynthesis subgroup

- Lead: Thomas Siegert (JMU, Germany)
- **Co-lead:** Chris Fryer (LANL, USA)
- Members: Hugh Bates, Jacqueline Beechert, Steve Boggs, Eric Burns, Catherine Deibel, Savitri Gallego, Dieter Hartmann, Pierre Jean, Carolyn Kierans, Jürgen Knödlseder, Martin Krause, Mark Leising, Raffaella Margutti, Saurabh Mittal, Igor Moskalenko, Katarzyna Nowak, Uwe Oberlack, David Palmore, Jacob Smith, Anaya Valluvan, Hiroki Yoneda, Andreas Zoglauer

Authors of this presentation: Tomsick, Siegert, Hartmann, Kierans, Zoglauer, and the COSI Science Team

Goal A: Uncover the Origin of Galactic Positrons

A1: Identify potential individual positron sources in the Galaxy	 COSI shall image the positron line emission at 0.511 MeV in the bulg size scales of <250 pc rms (1.75° rms)
A2: Determine the scale-height of the Galactic disk	 COSI shall distinguish between a thin-disk (3.5° scale-height) and a thick-disk (10° scale-height) distribution for the 0.511 MeV Galactic positron emission
A3: Study the annihilation mechanism and the differences between the disk and bulge	 COSI shall search for variations in the annihilation mechanism by measuring the 0.511 MeV emission line profile COSI shall determine if most of the positrons are slowed down in the interstellar medium before annihilating (0.4-0.5 MeV vs. 0.511 MeV intensity)

A4: Investigate the energy at which positrons are created •

COSI shall search for a break in the 0.5-3 MeV spectrum

COSI

A Gamma-ray Space Explorer

Emission line imaging and three windows on element formation from massive stars

B4: Probe explosion physics in the core of supernovae

- □Gamma² Velorum is a nearby (~345 pc) WR11/O-star binary
- Detection would calibrate the ²⁶Al ejection during the WR phase
- □ Not detected by COMPTEL or INTEGRAL, but what do we expect from COSI?
 - Being investigated as part of data challenge 3, considering two cases with ²⁶Al flux of 5x10⁻⁶ ph/cm²/s
 - Point source: should be easily detectable at COSI's required 2-year sensitivity of 3x10⁻⁶ ph/cm2/s (3-sigma)
 - Extended source: investigating with the DC3 simulations

COSI and SNIa

Planetary: star and planet formation

- Heating from radioactivity is an important parameter for planet formation
- □ COMPTEL 1.809 MeV image shows evidence for ²⁶Al coincident with Ophiuchus star-forming region
 - Forbes+21 Nature paper
- \Box However, the COMPTEL detection is only ${\sim}2\sigma$
- COSI greatly improves angular resolution and sensitivity

- Forbes+21, Nature
- Red: Distribution of ²⁶Al (COMPTEL, 3.8° ang. res.) near Ophiuchus
- Gray: Planck dust map

Supernovae: time scales

Nuclear Physics in Astrophysics XI – John Tomsick

Detected gamma-ray emission lines

	Isotope or particle	Mean Decay Time	Decay Chain Gamma-ray energies (keV)		Detected Source(s)	
	⁵⁶ Ni	8.8 d; 111 d	$^{56}Ni \rightarrow {}^{56}Co^* \rightarrow {}^{56}Fe^* + e^+$	158, 812, 847, 1238	SN2014J, SN1987A, SN1991T(?)	
2	⁵⁷ Ni	390 d	$^{57}\text{Co} \rightarrow ^{57}\text{Fe}^*$ 122		SN1987A	
)	⁴⁴ Ti	85 yr	$^{44}\text{Ti} \rightarrow ^{44}\text{Sc}^* \rightarrow ^{44}\text{Ca}^* + e^+$	68, 78, 1157	SNRs (Cas A, 1987A, Tycho?)	
כ	²⁶ AI	1.04e6 yr	$^{26}AI \rightarrow ^{26}Mg^{*}+e^{+}$	1809	Massive star groups (several)	
	⁶⁰ Fe	3.5e6 yr	$^{60}\text{Fe} \rightarrow {}^{60}\text{Co}^* \rightarrow {}^{60}\text{Ni}^*$	1173, 1333	Milky Way Galaxy (integrated)	
ראכ	e+	Propagation time	e ⁺ /e ⁻ annihilation (2 or 3 photon)	511, <511	Galactic bulge, Galactic disk	

Predictions within reach for: ⁷Be (478 keV), ²²Na (1275 keV), ^{229/230}Th (many), and ¹²⁶Sn (many); adapted from Diehl+11

Isotope	Mechanism	Gamma-ray energies (keV)		
² H	Neutron capture	2223		
¹² C, ¹⁶ O, ²⁴ Mg, ²⁰ Ne, ²⁸ Si	p/alpha collision and de-excitation	1369, 1634, 1779, 4438, 6129		
⁷ Be, ⁷ Li	alpha- ⁴ He 400-500			
at /as (E11 ha))) and 56Es (047 ha))) also data stad. Chih + 02, Chaith + 02, Chang + 02, Chih + 00				

 e^+/e^- (511 keV) and ⁵⁶Fe (847 keV) also detected; Shih+03, Smith+03, Share+03, Shih+09

Solar

- ²⁶Al is produced in core and shell Hburning via the NaMgAl-cycle in the ²⁵Mg(p gamma)²⁶Al reaction and will be eventually ejected in the stellar wind during the WR phase.
- 60Fe is produced by neutron captures on ⁵⁹Fe, and destroyed again via ⁶⁰Fe(n gamma)⁶¹Fe (during the sprocess)
- 44Ti is produced by ⁴⁰Ca(alpha gamma)⁴⁴Ti
- ⁶⁰Fe is entirely produced in the sprocess during shell He-burning and thus is a pure product of stellar evolution
- ⁴⁴Ti is only made in the explosive phase of complete Si-burning with alpha-rich freeze-out from charged particle equilibrium

Decay	Lifetime(y)	γ -ray energy (keV)	Site (detections)	Process
chan	Lifetille(y)	(Dranching fatio [%])	(detections)	type
$^{7}\text{Be} \rightarrow ^{7}\text{Li}$	0.21	478 (100)	Novae	Explosive H burning
${}^{56}\text{Ni} \longrightarrow {}^{56}\text{Co} \longrightarrow {}^{56}\text{Fe}$	0.31	847 (100), 1,238 (68) 2,598 (17), 1,771 (15) and 511 from e ⁺	SNe (SN1987A, SN1991T)	NSE burning
${}^{57}\text{Co} \longrightarrow {}^{57}\text{Fe}$	1.1	122 (86), 136 (11)	SNe (SN1987A)	NSE burning
22 Na \longrightarrow ²² Ne	3.8	1275 (100) and 511 from e ⁺	Novae	Explos. H burning
$^{44}\text{Ti} \longrightarrow ^{44}\text{Sc} \longrightarrow ^{44}\text{Ca}$	89	68 (95), 78 (96) 1,156 (100) and 511 from e ⁺	SNe (Cas A)	NSE α freeze-out
$^{26}\text{Al} \longrightarrow ^{26}\text{Mg}$	1.04 10 ⁶	1,809 (100) and 511 from e ⁺	ccSNe, WR Novae, AGB (Galaxy) (Cygnus; Sco-Cen; Orion; Vela)	Η burning (ν-proc.)
${}^{60}\text{Fe} \longrightarrow {}^{60}\text{Co} \longrightarrow {}^{60}\text{Ni}$	3.8 10 ⁶	1,173 (100), 1,332 (100) 59 (2)	SNe (Galaxy)	He,C shell burning
$e^+ \longrightarrow Ps, \dots \longrightarrow \gamma \gamma(\gamma)$	$\sim 10^{7}$	2.511 (~100), cont <510	Radioactivities Pulsars, μ QSOs, (Galactic bulge; disk)	β^+ decay rel. plasma

Table 7.1 Radioactivities with gamma-ray line emission, sorted by ascending radioactive mean lifetime (updated from Diehl et al., 2006c)

Payload cutaway

