

Impact of Stellar Yields on Galactic Chemical Evolution

Marco Pignatari

- @Konkoly Observatory, CSFK HUN-REN & MTA Centre of Excellence, Budapest, Hungary

Nuclear Physics in Astrophysics XI (NPA-XI), 15-20 September 2024

Messages to remember

- Stellar yields are a crucial source of uncertainty for Galactic Chemical Evolution (GCE) of element and isotope abundances.
- Uncertainties vs errorbars: why stellar yields are not provided with errorbars? It is really hard to provide comprehensive errors for stellar yields!
- The GCE results not fitting the observations for "good" reasons are usually more useful than the "good" GCE results for "wrong" reasons.
- Example 1: [Mg/Si] vs [C/O] & Si isotopes in presolar SiC grains
- Example 2: C-O-Si shell merger in massive stars: does it happen in real stars?
- Example 3: Short-Lived Radioactive isotopes.
- Can we use GCE to learn about stars? Yes, if we use the right elemental and isotopic ratios.

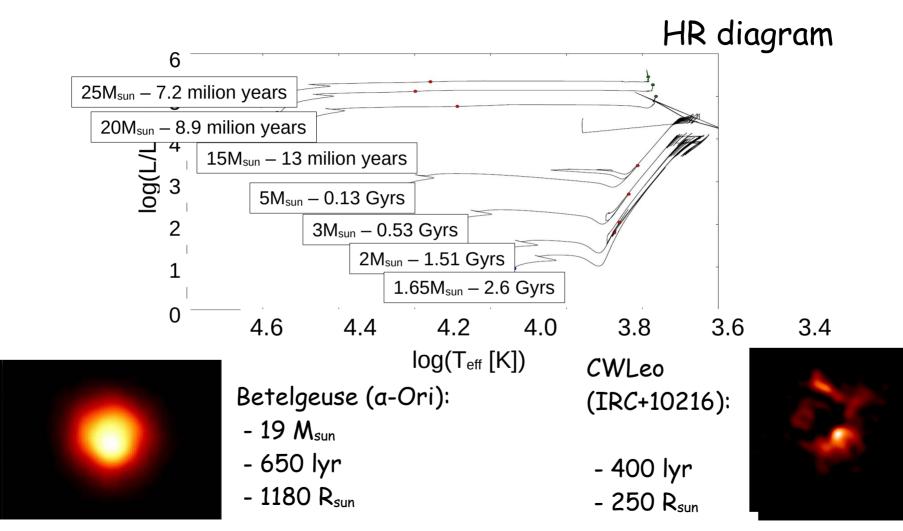
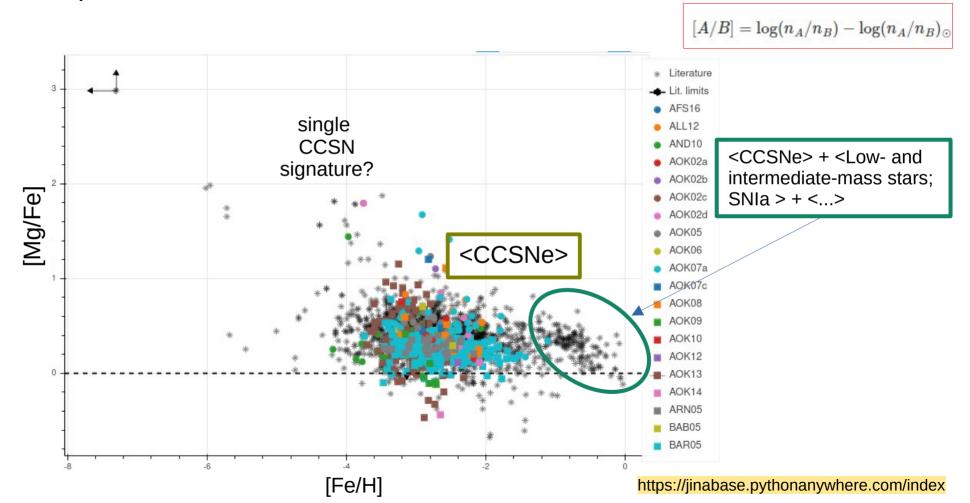
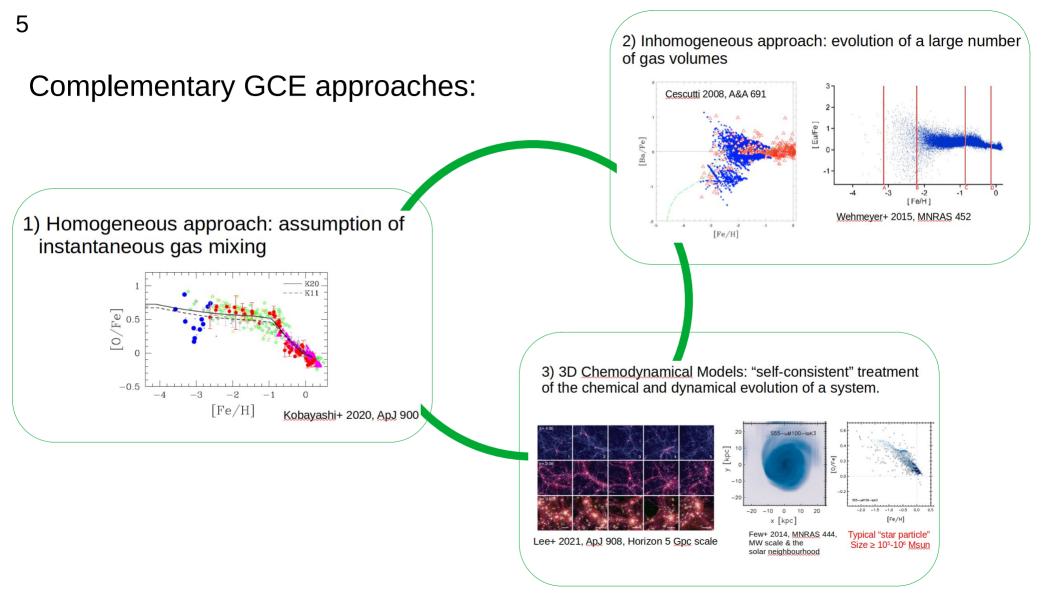
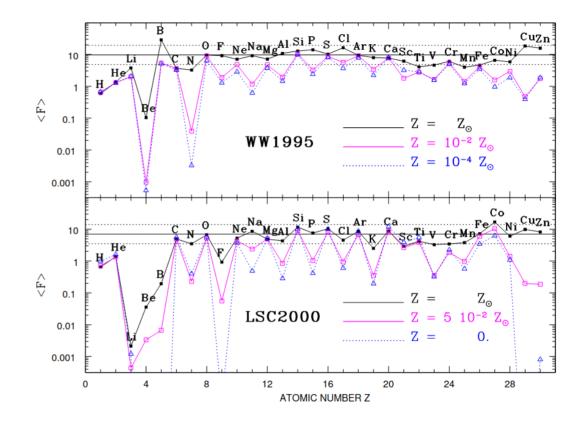




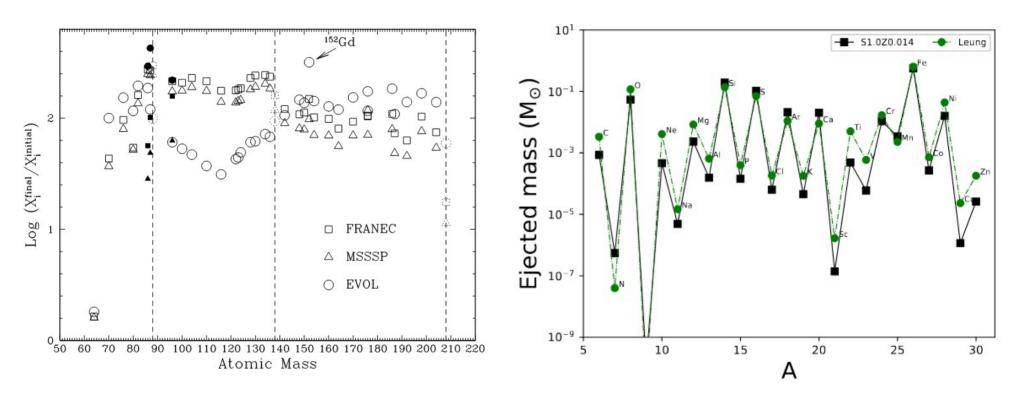
Image: A. Dupree/CFA/R. Gilliland/STScI/NASA/ESA

Tuthill et al. 2000, A&A, Keck Telescope


GCE keeps memory of the different stellar generations contributing to the production of elements.

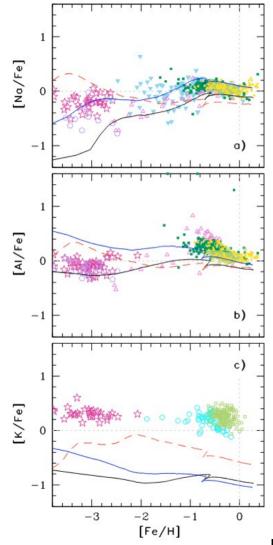
Stellar yields and GCE


Timmes+ 1995 ApJS 98, Gibson+ 1997 MNRAS 290, Chiappini+ 2005 A&AL 27 ...


... to Prantzos+ 2018 MNRAS 476, Gronow+ 2021 A&A 656,

Approach:

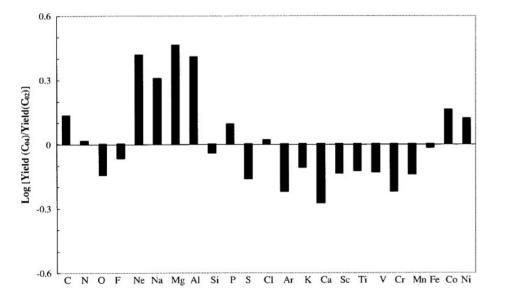
produce GCE models using different stellar yields sets, to evaluate the impact of their variations on GCE predictions.



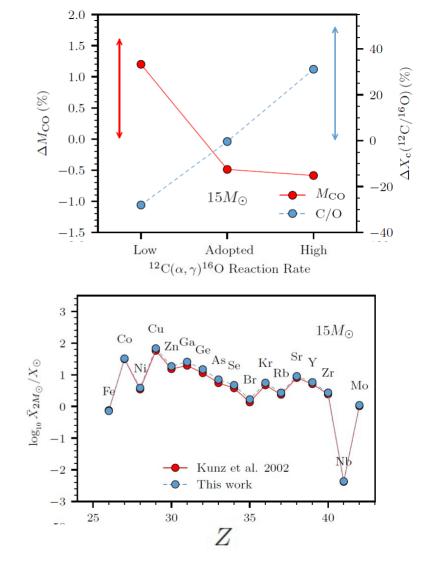
Goswami & Prantzos 2000 A&A 359

Lugaro+ 2003 ApJ 586 AGB stars: FRANEC vs MSSSP vs EVOL

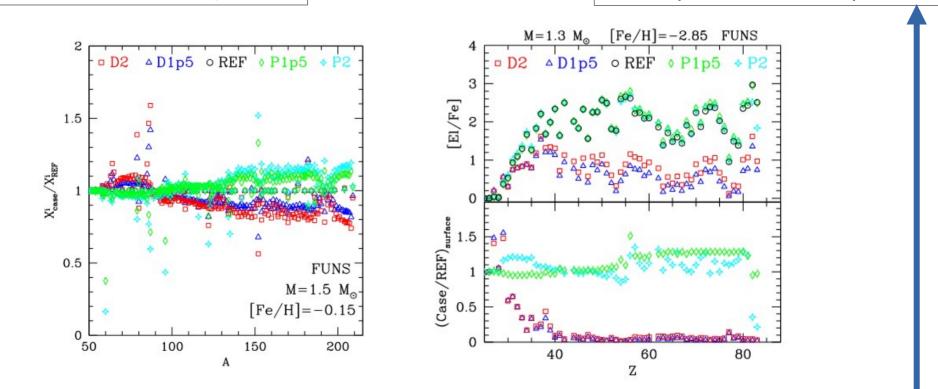
Keegans+ 2023 APJS 268 SubCh SNIa: Leung & Nomoto 2020 ApJ 861 vs Shen+ 2018 ApJ 854



When trying to reproduce the elements (well.. the [element/Fe]):


- The yield sets allowing to fit better the observations for an element may not work for another element (e.g., Na vs Al).
- For some elements, there are no yields configuration to use for GCE that are consistent with observations (e.g., K).

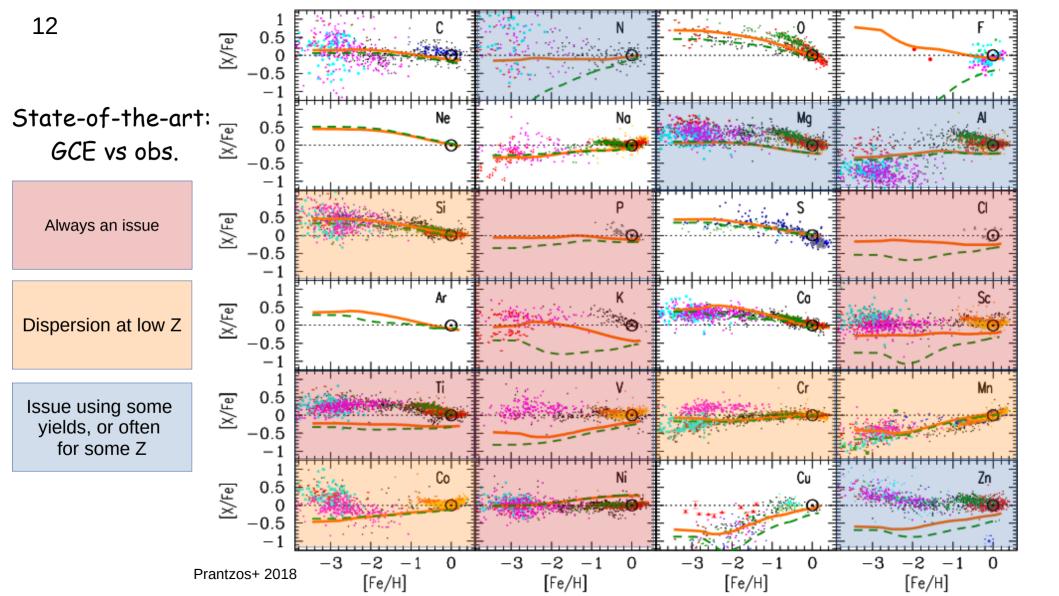
Romano+ 2010 A&A 522

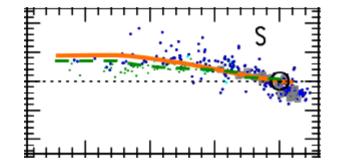


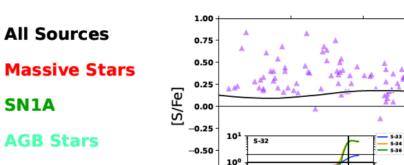
Case 1: ${}^{12}C(\alpha,\gamma){}^{16}O$, from Imbriani+ 2000 ApJ 558 and Deboer+ 2017 RMP 89

See A Choplin, F. Herwig and S. Martinet talks

The i-process happening here. The impact is model dependent!




Case 2: ¹³C(α,n)¹⁶O, from Cristallo+ 2018 ApJ 2018


Typical AGB star with s-process

See also M. Wiedeking talk for the ${}^{66}Ni(n,\gamma){}^{67}Ni$ rate

11

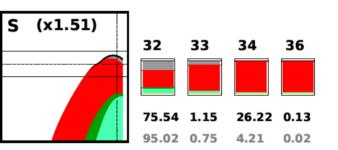
-0.75

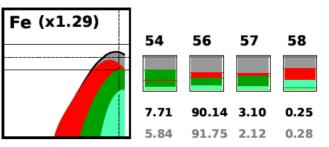
-1.00 | - _2.0

-1.5

-1.0

[Fe/H]


-0.5


NSM r-process ____

—

- SN1A

Reifarth+ 2000 ApJ 528 The ${}^{34}S(n,\gamma){}^{35}S$ rate made life really hard for ³⁶S.

0.0

0.5

Preliminary: No statistics yet!

Monthly Notices

of the ROYAL ASTRONOMICAL SOCIETY

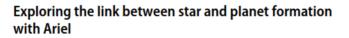
MNRAS **524**, 6295–6330 (2023) Advance Access publication 2023 July 21

https://doi.org/10.1093/mnras/stad2167

16 authors

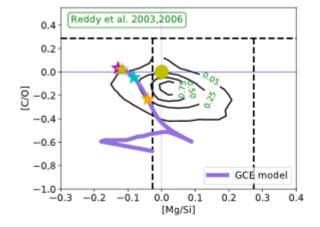
•

5 PhD/young PDRA


Target communities: nuclear astrophysics & planet formation/modeling

The chemical evolution of the solar neighbourhood for planet-hosting stars

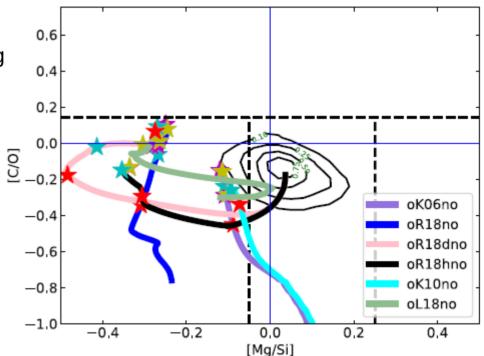
Marco Pignatari,^{1,2,3,4,5} Thomas C. L. Trueman,^{1,3,4} Kate A. Womack^(a),³ Brad K. Gibson,^{3,5} Benoit Côté,^{1,4,5,6} Diego Turrini,^{7,8,9} Christopher Sneden,¹⁰ Stephen J. Mojzsis,^{1,2,11} Richard J. Stancliffe,^{4,12} Paul Fong,^{3,4} Thomas V. Lawson^(a),^{3,4,13} James D. Keegans,^{4,14} Kate Pilkington,¹⁵ Jean-Claude Passy,¹⁶ Timothy C. Beers^{5,17} and Maria Lugaro^{1,2,18,19}


Experimental Astronomy (2022) 53:225–278 https://doi.org/10.1007/s10686-021-09754-4

ORIGINAL ARTICLE

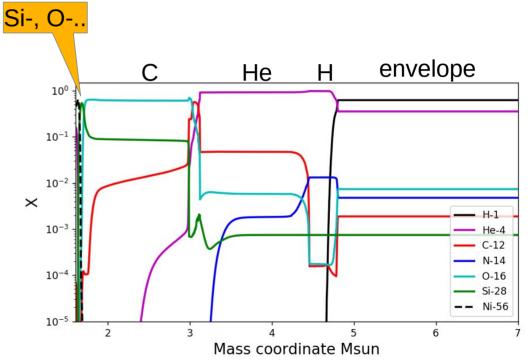
Diego Turrini^{1,2} • Claudio Codella³ · Camilla Danielski⁴ • Davide Fedele^{2,3} · Sergio Fonte¹ · Antonio Garufi³ · Mario Giuseppe Guarcello⁵ · Ravit Helled⁶ · Masahiro Ikoma⁷ · Mihkel Kama^{8,9} · Tadahiro Kimura⁷ · J. M. Diederik Kruijssen¹⁰ · Jesus Maldonado⁵ · Yamila Miguel^{11,12} • . Sergio Molinari¹ · Athanasia Nikolaou^{13,14} · Fabrizio Oliva¹ · Olja Panić¹⁵ · Marco Pignatari^{16,17,18} · Linda Podio³ · Hans Rickman¹⁹ · Eugenio Schisano¹ · Sho Shibata⁷ · Allona Vazan²⁰ · Paulina Wolkenberg¹

Received: 30 June 2020 / Accepted: 13 April 2021 / Published online: 15 October 2021

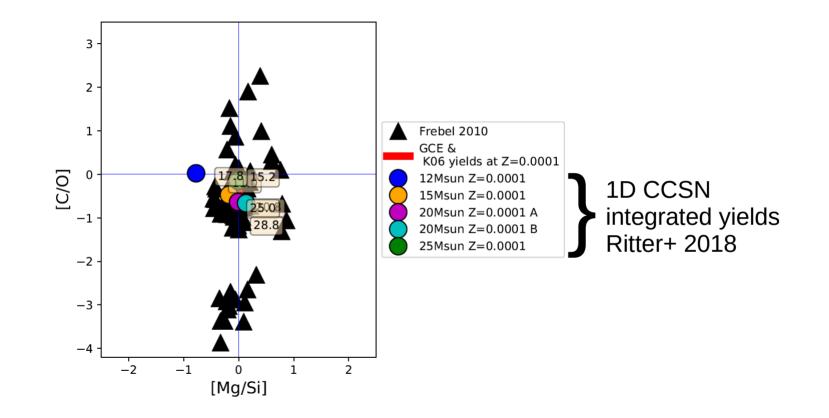


Effect of stellar yields & the Mg puzzle

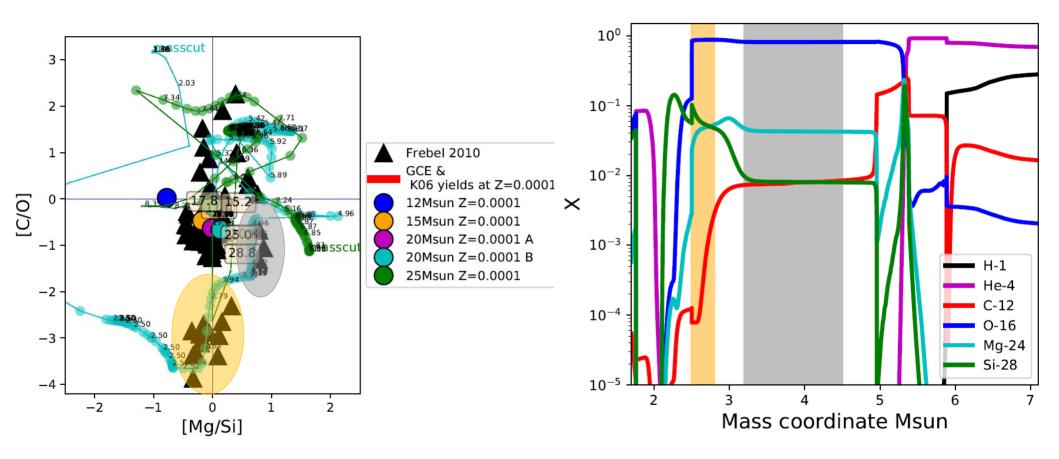
- 6 stellar yield sets
- the solar [C/O] is obtained using 3 sets
- by using 2 other sets we get closer to the solar [Mg/Si], but none of them show enough Mg


Mg puzzle!

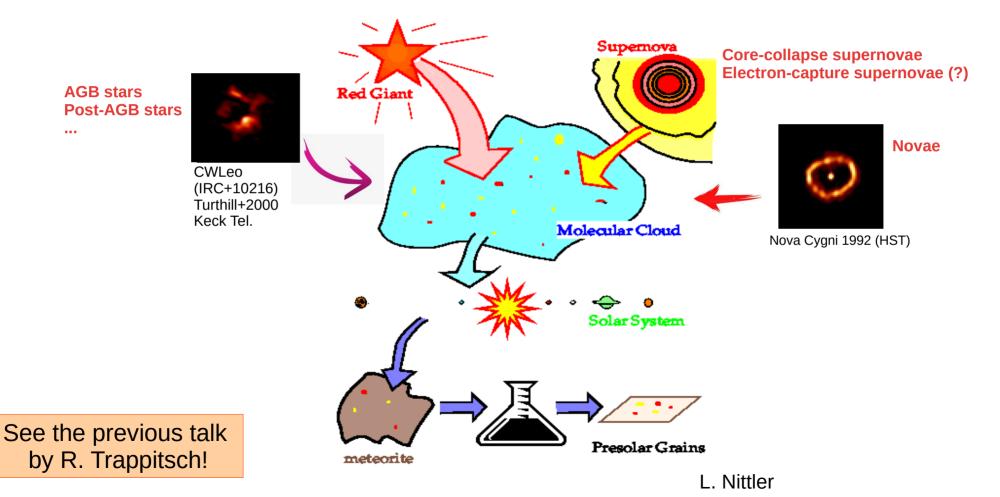
Old problem, identified first from using WW95 CCSNe yields



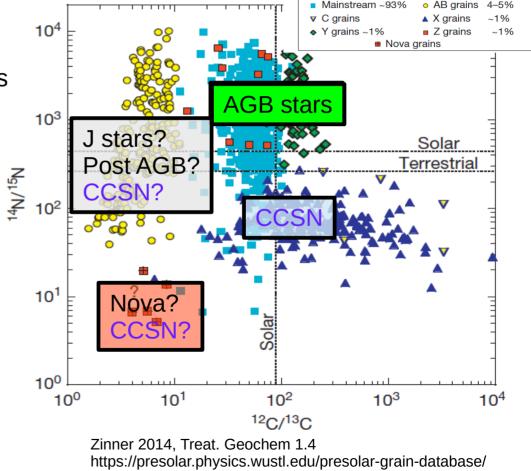
Nuclear astrophysics point of view: it should not be that difficult..


- C: product of $3\alpha \rightarrow {}^{12}C$ reaction (preSN partial He-burning)
- O: product of the ¹²C(α,γ)¹⁶O reaction (preSN He-burning)
- Mg: product of the ²⁰Ne(α,γ)²⁴Mg reaction (preSN C/Ne-burning)
- **Si**: product of ¹⁶O+¹⁶O (explosive O-burning)

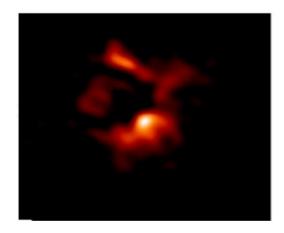
M=15Msun, Z=0.02 Ritter+2018 MNRAS 480 MESA progenitor Fryer+12 explosion



Work in progress: comparison with stellar archaeology data - Pignatari+ in prep.

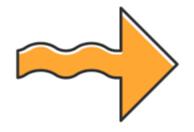

Work in progress: comparison with stellar archaeology data - Pignatari+ in prep.

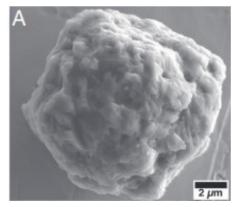
The presolar grain journey from stars to us



Working with presolar grains

- Study of nucleosynthesis isotopic anomalies in bulk grains and single grains
- Study of meteoritic anomalies, carried by different types of presolar grains
- Study of isotopic signatures not modified by intrinsic nucleosynthesis in the parent star (GCE study for stars that we cannot observe anymore, died "shortly" before the formation of the Sun)

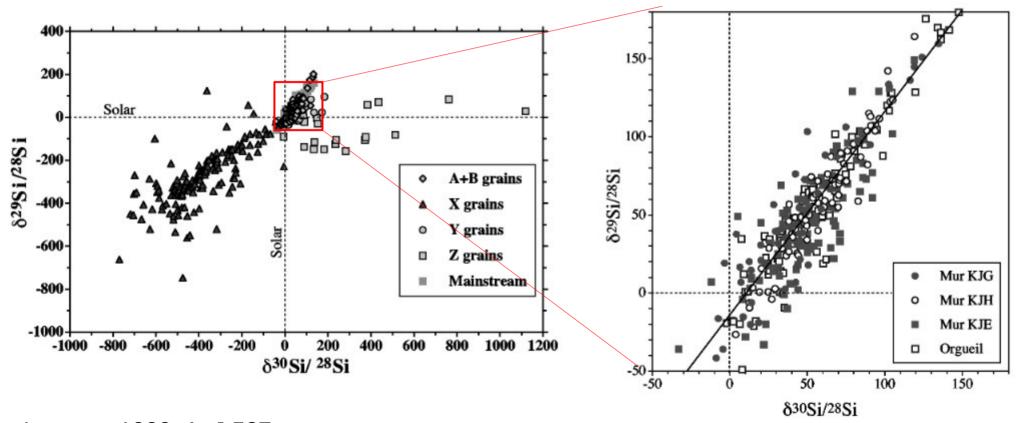

Time GCE window provided by grains

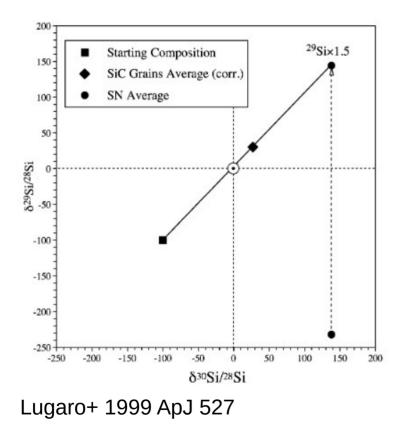


21

 $3 \text{ Gyr} > \tau > 0.5 \text{ Gyr}$

< 0.3 Gyr in the ISM (Heck+ 2020, PNAS 117)

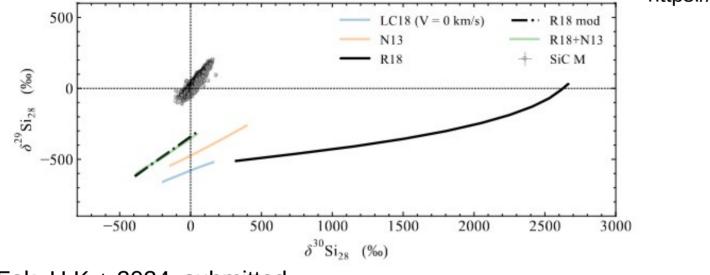



ESS

GCE with presolar grains

 δ abundances = ((isotope1/isotope2)/solar ratio - 1)*1000

Lugaro+ 1999, ApJ 527

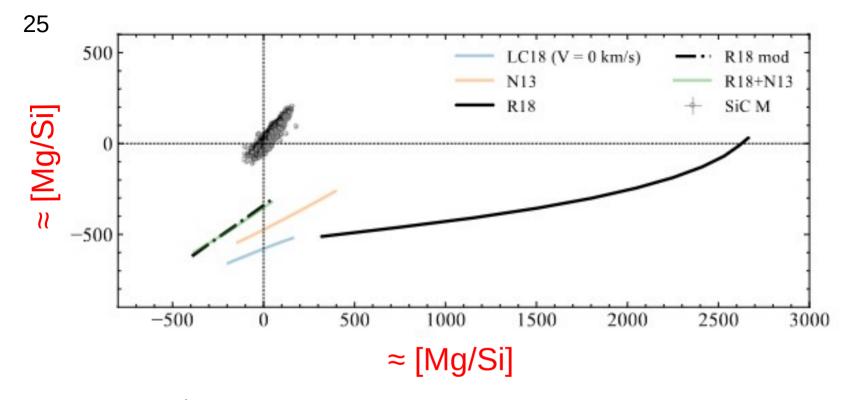


Scenarios to explain the Si isotope scatter:

- <u>Clayton 1997 ApJ 484</u>: stars diffused outward from more metal-rich part of the disks (the Sun was born at 6.6 kpc), i.e., giving higher Si29 and Si30 with respect to Si28;
- <u>Alexander & Nittler 1999 ApJ 526</u>: Cl97 may work, but other processes may be at play;
- <u>Lugaro+ 1999 ApJ 527</u>: effect of heterogeneous GCE from CCSNe contribution ...
 - ... and moving further using the isotopes from two elements (<u>Nittler 2005 ApJ 618</u>);
- <u>Clayton 2003 ApJ 598</u>: mixing line due to a merger between a metal-poor dwarf galaxy and the Milky Way disk 5-6 Gyr ago;
- <u>Lewis+ 2013 ApJL 768</u>, reviewing the problem and supporting the role of migration in shaping the observed scatter.

Open-source GCE codes OMEGA

http://nugrid.github.io/NuPyCEE https://github.com/becot85/JINAPyCEE



See poster #86 by Spelta et al.

Results affected by nuclear uncertainties, among others by the ${}^{30}Si(n,\gamma){}^{31}Si$ rate

Fok, H.K.+ 2024, submitted

- Commen	t				
there is disc		veen the act		table from GKD03, but extended above kT=60 keV with norm. energy dependence from endfb71. Note on measurement from BSR02b and the FOF value from GKD03. A further investigation is required!!!	
	l available v				
			type (Comment	Ref
	renorm.	year	Distances in	Comment Linac, TOF, Au: Sat.; DC component is 0.48 (30) mb; no res. at 2.235 keV found	Ref GKD0

▼ Comment

Rec. value is from GKD03. MACS vs. kT table from GKD03, but extended above kT= 50 keV with norm. energy dependence from endfb71. Note that there is discrepancy between the activation measurement from BSR02b and the TOF value from GKD03. A further investigation is required!!! Last review: August 2014

▼ List of all available values

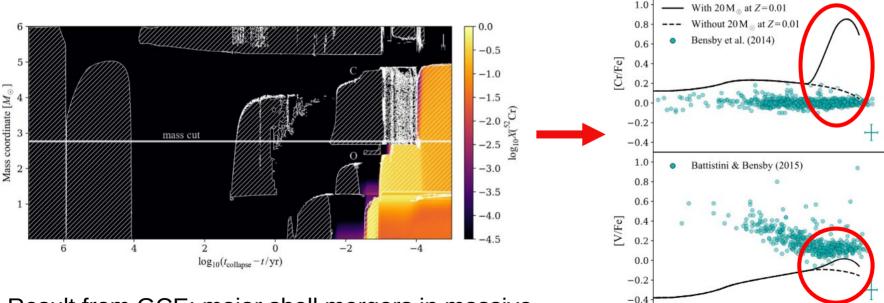
original	renorm.	year	type	Comment	Ref
1.82 ± 0.33		2003	С	Linac, TOF, Au: Sat.; DC component is 0.48 (30) mb; no res. at 2.235 keV found	GKD03
3.51 ± 0.15 kT= 25 keV	3.24 ± 0.14	2002,2015	с	VdG, Act., Au:RaK88 corrected by 632 mb/586 mb= 1.0785; DC component at kT= 30 keV is 0.36 mb	BSR02b

THE ASTROPHYSICAL JOURNAL, 892:57 (6pp), 2020 March 20 © 2020. The American Astronomical Society. All rights reserved.

-1.0

-1.5

-0.5

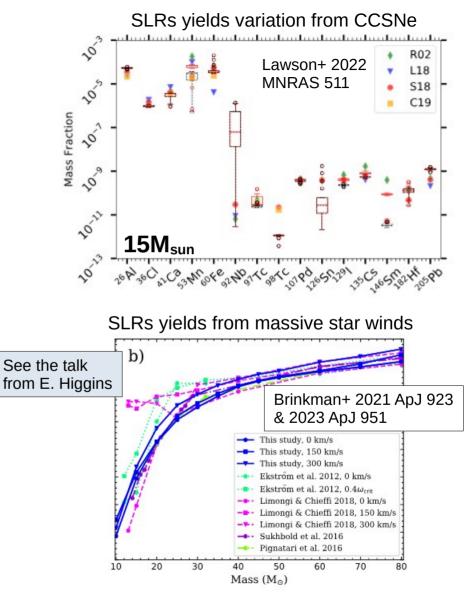

[Fe/H]

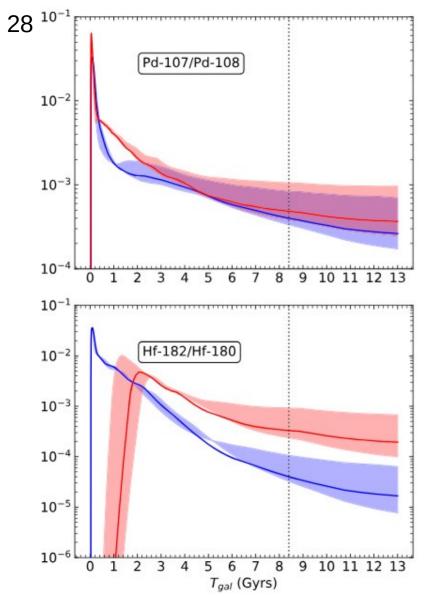
0.0

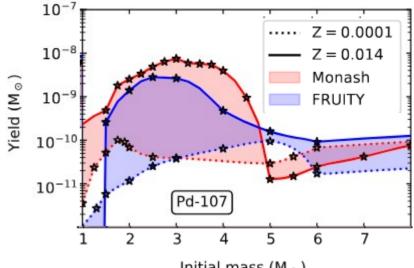
0.5

Chromium Nucleosynthesis and Silicon-Carbon Shell Mergers in Massive Stars

Benoit Côté^{1,2,3,4,8}, Samuel Jones^{5,8}, Falk Herwig^{3,6,8}, and Marco Pignatari^{1,3,7,8}

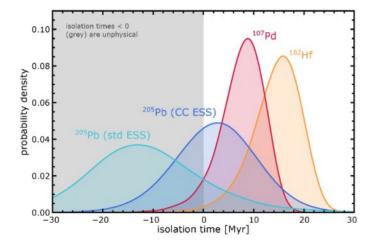

<u>Result from GCE</u>: major shell mergers in massive stars including Si shell material should be a rare event.


GCE of short-lived-radioactive isotopes ($T_{1/2} \sim 0.1$ -100 million years) observed in the Early Solar System (Lugaro+ 2018 PrPNP 102)


GCE contribution may be relevant for species with $T_{1/2} \ge 2$ Myr

SLR	Daughter	Reference	$T_{1/2}$ (Myr)
²⁶ Al	²⁶ Mg	²⁷ Al	0.72
36Cl	³⁶ S	35CI	0.30
⁴¹ Ca	⁴¹ K	⁴⁰ Ca	0.099
⁵³ Mn	⁵³ Cr	⁵⁵ Mn	3.7
⁶⁰ Fe	⁶⁰ Ni	⁵⁶ Fe	2.6
⁹² Nb	⁹² Zr	⁹² Mo	34
⁹⁷ Tc	⁹⁷ Mo	⁹⁸ Ru	4.2
⁹⁸ Tc	⁹⁸ Ru	⁹⁸ Ru	4.2
¹⁰⁷ Pd	¹⁰⁷ Ag	¹⁰⁸ Pd	6.5
¹²⁶ Sn	¹²⁶ Te	¹²⁴ Sn	0.23
129I	¹²⁹ Xe	¹²⁷ I	15
¹³⁵ Cs	¹³⁵ Ba	¹³³ Cs	2.3
¹⁴⁶ Sm	142 Nd	144 Sm	68
¹⁸² Hf	¹⁸² W	¹⁸⁰ Hf	8.9
²⁰⁵ Pb	²⁰⁵ Tl	²⁰⁴ Pb	17

See the talks by B. Wehmeyer and A. Vasini



Initial mass (M $_{\odot}$)

Trueman+2022 ApJ 924

See Posters #88 by Thomas Neff and #254 by Guy Leckenby & Iris Dillmann

<u>Message to take home:</u> before these results it was impossible to generate robust ²⁰⁵Pb s-process yields from AGB stars. Now results are getting good!

205 _{Bi}	206 _{Bi}	²⁰⁷ Bi	²⁰⁸ Bi	²⁰⁹ Bi
15.31 d	6.24 d	32.90 a	367.91 ka	100%
β ⁺	β ⁺	β ⁺	β ⁺	2.7 mb
²⁰⁴ Pb	205pb	206 <mark>pb</mark>	207 <mark>pb</mark>	208 _{Pb}
1.4%	17.30 Ma	24.1%	22.1%	52.4%
89.5 mb	125 mb, β ⁺	14.5 mb	9.7 mb	0.36 mb
203 _{TI}	204 <mark>TI</mark>	205 _{TI}	206 ၂	207 _{TI}
29.524%	3.78 a	70.476%	4.20 m	4.77 m
124 mb	215 mb, β ⁻	54 mb	β ⁻	β ⁻
202 _{Hg}	203 <mark>Hg</mark>	²⁰⁴ Hg	²⁰⁵ Hg	206Hg
29.86%	46.60 d	6.87%	5.14 m	8.15 m
63.2 mb	98 mb, β ⁻	42 mb	β ⁻	β ⁻
201 _{Au}	202 _{Au}	203 _{Au}	204 _{Au}	205 _{Au}
26.00 m	28.80 s	1.00 m	39.80 s	31.00 s
β ⁻	β ⁻	β ⁻	β ⁻	β ⁻

See also Casanovas-Hoste+ 2024 PRL 133 for the new 204TI MACS (C. Domingo-Pardo's talk)

Messages to remember

- Stellar yields are a crucial source of uncertainty for Galactic Chemical Evolution (GCE) of element and isotope abundances.
- Uncertainties vs errorbars: why stellar yields are not provided with errorbars? It is really hard to provide comprehensive errors for stellar yields!
- The GCE results not fitting the observations for "good" reasons are usually more useful than the "good" GCE results for "wrong" reasons.
- Example 1: [Mg/Si] vs [C/O] & Si isotopes in presolar SiC grains
- Example 2: C-O-Si shell merger in massive stars: does it happen in real stars?
- Example 3: Short-Lived Radioactive isotopes.
- Can we use GCE to learn about stars? Yes, if we use the right elemental and isotopic ratios.