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Messages to remember

● Stellar yields are a crucial source of uncertainty for Galactic Chemical Evolution (GCE) of element 
and isotope abundances. 

● Uncertainties vs errorbars: why stellar yields are not provided with errorbars? It is really hard to 
provide comprehensive errors for stellar yields! 

● The GCE results not fitting the observations for “good” reasons are usually more useful than the 
“good” GCE results for “wrong” reasons. 

● Example 1: [Mg/Si] vs [C/O] & Si isotopes in presolar SiC grains

● Example 2: C-O-Si shell merger in massive stars: does it happen in real stars?

● Example 3: Short-Lived Radioactive isotopes.

● Can we use GCE to learn about stars? Yes, if we use the right elemental and isotopic ratios. 
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GCE keeps memory of the different stellar generations contributing 
to the production of elements.
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Complementary GCE approaches:



  

Stellar yields and GCE
6

Timmes+ 1995 ApJS 98, Gibson+ 1997 MNRAS 290, Chiappini+ 2005 A&AL 27 …

… to Prantzos+ 2018 MNRAS 476, Gronow+ 2021 A&A 656, ….



  

Goswami & Prantzos 2000  A&A 359

Approach: 
produce GCE models using different 
stellar yields sets, to evaluate the 
impact of their variations on GCE 
predictions.   
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Keegans+ 2023 APJS 268
SubCh SNIa: Leung & Nomoto 2020 ApJ 861 
vs Shen+ 2018 ApJ 854

Lugaro+ 2003 ApJ 586
AGB stars: FRANEC vs MSSSP vs EVOL
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Romano+ 2010 A&A 522 

When trying to reproduce the elements (well.. the [element/Fe]):
● The yield sets allowing to fit better the observations for 

an element may not work for another element (e.g., Na vs Al).
● For some elements, there are no yields configuration 

to use for GCE that are consistent with observations (e.g., K).
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Case 1: 12C(α,γ)16O, from Imbriani+ 2000 ApJ 558 and 
Deboer+ 2017 RMP 89
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Case 2: 13C(α,n)16O, from Cristallo+ 2018 ApJ 2018
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The i-process happening here.
The impact is model dependent!

See also M. Wiedeking talk
for the 66Ni(n,γ)67Ni rate

Typical AGB star with s-process

See A Choplin, F. Herwig and S. Martinet talks



  
Prantzos+ 2018
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Always an issue

Dispersion at low Z

Issue using some 
yields, or often 

for some Z

State-of-the-art: 
GCE vs obs.



  
Preliminary: No statistics yet!
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Reifarth+ 2000 ApJ 528
The 34S(n,γ)35S rate made life

really hard for 36S.  
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● 16 authors
● 5 PhD/young PDRA

● Target communities:
nuclear astrophysics &
planet formation/modeling 



  

Effect of stellar yields & the Mg puzzle
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● 6 stellar yield sets
● the solar [C/O] is obtained using 3 sets
● by using 2 other sets we get closer to the 
solar [Mg/Si], but none of them show enough Mg

Mg puzzle!

Old problem, identified first from 
using WW95 CCSNe yields

See also poster #55 by F.P. Jost et al.



  

Nuclear astrophysics point of view: 
it should not be that difficult.. 

● C: product of 3α→ 12C reaction 
(preSN partial He-burning)

● O: product of the 12C(α,γ)16O 
reaction (preSN He-burning)

● Mg: product of the 
20Ne(α,γ)24Mg reaction (preSN 
C/Ne-burning)

● Si: product of 16O+16O 
(explosive O-burning)
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envelopeHHeC

Si-, O-..

M=15Msun, Z=0.02
Ritter+2018 MNRAS 480
MESA progenitor
Fryer+12 explosion



  Work in progress: comparison with stellar archaeology data - Pignatari+ in prep. 
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1D CCSN 
integrated yields
Ritter+ 2018}



  Work in progress: comparison with stellar archaeology data - Pignatari+ in prep. 
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The presolar grain journey from stars to us

L. Nittler

19

Nova Cygni 1992 (HST)

Core-collapse supernovae
Electron-capture supernovae (?)

Novae
CWLeo
(IRC+10216)
Turthill+2000 
Keck Tel.

AGB stars
Post-AGB stars
...

See the previous talk 
by R. Trappitsch!



  

Working with presolar grains

Zinner 2014, Treat. Geochem 1.4
https://presolar.physics.wustl.edu/presolar-grain-database/

AGB stars

CCSN

Nova?
CCSN?

J stars?
Post AGB?
CCSN?

AGB starsAGB starsAGB stars
● Study of nucleosynthesis isotopic anomalies 

in bulk grains and single grains

● Study of meteoritic anomalies, carried by 
different types of presolar grains

● Study of isotopic signatures not modified
by intrinsic nucleosynthesis in the parent 
star (GCE study for stars that we cannot
observe anymore, died “shortly” before 
the formation of the Sun)
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Time GCE window provided by grains

ESS

< 0.3 Gyr in the ISM
(Heck+ 2020, PNAS 117) 

3 Gyr > τ > 0.5 Gyr
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GCE with presolar grains

Lugaro+ 1999, ApJ 527 δ abundances =  ((isotope1/isotope2)/solar ratio - 1)*1000
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Lugaro+ 1999 ApJ 527

Scenarios to explain the Si isotope scatter:

● Clayton 1997 ApJ 484: stars diffused outward from 
more metal-rich part of the disks (the Sun was born 
at 6.6 kpc), i.e., giving higher Si29 and Si30 with 
respect to Si28;

● Alexander & Nittler 1999 ApJ 526: Cl97 may work,
but other processes may be at play;

● Lugaro+ 1999 ApJ 527: effect of heterogeneous GCE 
from CCSNe contribution ...

… and moving further using the isotopes from 
two elements (Nittler 2005 ApJ 618) ;

● Clayton 2003 ApJ 598: mixing line due to a merger
between a metal-poor dwarf galaxy and the Milky Way 
disk 5-6 Gyr ago;

● Lewis+ 2013 ApJL 768, reviewing the problem and 
supporting the role of migration in shaping the observed
scatter.

23



  

Fok, H.K.+ 2024, submitted
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Results affected by 
nuclear uncertainties,
among others by the
30Si(n,γ)31Si rate

See poster #86 by Spelta et al.

Open-source GCE codes OMEGA
http://nugrid.github.io/NuPyCEE

https://github.com/becot85/JINAPyCEE
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Result from GCE: major shell mergers in massive
stars including Si shell material should be a rare event. 
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GCE of short-lived-radioactive isotopes 
(T1/2 ~ 0.1-100 million years) observed 
in the Early Solar System 
(Lugaro+ 2018 PrPNP 102)

GCE contribution may be relevant for 
species with T1/2 ≥ 2 Myr

SLRs yields variation from CCSNe

Lawson+ 2022 
MNRAS 511

15Msun

See the talks by B. Wehmeyer and A. Vasini

27

Brinkman+ 2021 ApJ 923
& 2023 ApJ 951

SLRs yields from massive star winds

See the talk 
from E. Higgins



  
Trueman+2022 ApJ 924
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See Posters #88 by Thomas Neff and 
#254 by Guy Leckenby & Iris Dillmann

Message to take home: before these results it 
was impossible to generate robust 205Pb 
s-process yields from AGB stars. 
Now results are getting good! See also Casanovas-Hoste+ 2024 PRL 133 

for the new 204Tl MACS (C. Domingo-Pardo’s talk) 
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Messages to remember

● Stellar yields are a crucial source of uncertainty for Galactic Chemical Evolution (GCE) of element 
and isotope abundances. 

● Uncertainties vs errorbars: why stellar yields are not provided with errorbars? It is really hard to 
provide comprehensive errors for stellar yields! 

● The GCE results not fitting the observations for “good” reasons are usually more useful than the 
“good” GCE results for “wrong” reasons. 

● Example 1: [Mg/Si] vs [C/O] & Si isotopes in presolar SiC grains

● Example 2: C-O-Si shell merger in massive stars: does it happen in real stars?

● Example 3: Short-Lived Radioactive isotopes.

● Can we use GCE to learn about stars? Yes, if we use the right elemental and isotopic ratios. 
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