Probing high density physics in the gravitational wave astronomy era

1

Neutron Stars - theoretical importance

What is the Equation of State of dense matter?

Neutron Stars - astrophysical laboratories

Observing NSs in gravitational waves

GW170817

(Abbott et al. 2017, ApJ Lett. 848, L12)

- NS-NS merger
- Confirmed by Multimessenger observations
- GRB detected confirmation of models
- Kilonova emission detected, heavy element production models tested

Tidal deformability

• Higher order Post Newtonian (v/c) corrections can be measured, and constrain the tidal deformability of the stars

GW170817

(Abbott et al. 2017, PRL 119, 161101)

- NS-NS merger
- Confirmed by Multimessenger observations
- GRB detected confirmation of models
- Kilonova emission detected, heavy element production models tested

Multimessenger constraints - EOS of dense matter

Beyond binary coalescences...

(Compact binary inspirals)

"bursts"

(GW pulsars, asteroseismology)

(Magnetar flares, Supernovae,...)

"stochastic"

(Cosmological signals)

Emission mechanisms for isolated NSs

Mountains

- From theory $\epsilon_{\rm max} \approx 10^{-6} \left(\frac{\sigma_{br}}{10^{-2}} \right)$
- ...for an exotic cristalline core:

 $\epsilon_{\rm max} \approx 10^{-4}$

Modes of oscillation

- Oscillations in the fluid couple to the gravitational field
- Main candidates f and r modes
- Emission at the mode frequency

(See BH & Schwenzer 2022 for a review)

<u>CW searches</u>

- Searches are computationally limited the more one can restrict parameter space the deeper the search
- EM observations help obtain deeper searches

Sensitivity

• Current GW searches sensitive to NS in our galaxy

Example: searching for known pulsars in O3

Abbott et al. ApJ 935, 1 (2022)

Abbott et al. Phys. Rev. D 105, 022002 (2022)

- No signal detected in current O3 searches, upper limits derived
- Energy emitted in GWs constrained for some pulsars
- Improvements in sensitivity needed to probe full range of models

Superfluids in neutron stars

(courtesy of Nils Andersson)

Pairing calculations confirm that mature neutron stars are expected to be superfluid

(see Haskell & Sedrakian 2018 for a review)

Pulsar glitches: probing superfluids at high density

(see Antonopoulou, BH & Espinoza, 2022 for a review)

What is happening?

Measuring masses

From the angular momentum reservoir we can obtain an upper limit on the NS mass

[Pizzochero, Antonelli, BH & Seveso (2017)] [Ho et al. (2015)]

<u>GWs from pulsar glitches</u>

- GW signals possible, both bursts from the rise, and CWs from the post-glitch phase
 [For a review see BH & Jones (2024)]
- One of the most studied targets is the Vela pulsar: (PSR J0835–4510) - large glitches roughly every 3 years
- Searches for GWs carried out after the 2006 glitch (Abadie et al. 2011) and the 2016 glitch (Keitel et al. 2019). No signal was detected, constraints were placed
- The Vela has glitched this year, during the O4 run!

Newly born neutron stars - J0537-6910

- Andersson et al. (2018), Ferdman et al. (2018) studied n between glitches
- far from glitches there is evidence for $n=7 \rightarrow constant$ amplitude r-mode
- a similar conclusions by **Ho et al. (2020)** with NICER data

 $\dot{\Omega} \propto \Omega^n$

 First searches in GW data from O1 and O2
(Fesik & Papa 2020) were not quite sensitive enough...new search with O3 data probes this scenario!

[from Abbott et al. ApJ Lett. 913, L27, (2021)]

Results - Astrophysical constraints

 The searches are digging well into the theoretical parameter space for the model, and below the spin-down limit! Abbott et al. ApJ. 922, 71 (2021)

Results - Astrophysical constraints

We constrain the range of masses and EoS consistent with r-mode emission
leading to the observed n=7 braking index
Abbott et al. ApJ. 922, 71 (2021)

<u>Conclusions</u>

- Fourth observing run of the LVK (O4) is ongoing
- Future instruments planned (SKA, Athena, SVOM, IceCube-Gen2, Hyper-K, PINGU, ET, Cosmic Explorer, CTA, AugerPrime, eLISA...and more...)
- Compact binary coalescence detections are now commonplace multi messenger observations are possible (also neutrino detection?)
- A CW detection is still elusive but the sensitivity of the instruments allows to probe theoretically relevant parameter space. O4 ongoing, stay tuned!
- Terrestrial nuclear physics experiments can provide additional 'messengers'