# Signatures of stellar nucleosynthesis in meteorites

Reto Trappitsch September 17, 2024

NASA, ESA, CSA, STScI, Danny Milisavljević (Purduc officersity), Ilse Device ze (uGent)), Teasformim (Princeton University)

#### The solar nebula – a turbulent environment



#### **Meteorites – the poor researcher's space probe**



- Falls and finds
- Generally found in hot and cold deserts



#### Meteorites come in various shapes and densities

#### Differentiated

#### Undifferentiated





- Got hot and (partially) melted
- Highly altered due to the heat

- Silicates and metals still mixed
- Most primitive meteorites

#### **METEORITES** Carbonaceous Noncarbonaceous Achondrites Chondrites Chondrites Achondrites CI, CM, CV, etc. Differentiated Primitive Primitive Ordinary Enstatite R Κ Differentiated

#### With a lot of measurements come a lot of different groups

Warren et al. (2011)

#### Precision measurements of meteorites indicate grouping



6

#### Jupiter – separator of reservoirs in the solar system

- Early infall of material: forms the first material (CAIs)
- Late infall: separation of NC & CC
- Jupiter core formation: Separates the two reservoirs
- After asteroids formed:
  - Migration of Jupiter and Saturn
  - Mixes material in solar system (grand tack model)



after Kleine et al. (2020)

#### Jupiter – separator of reservoirs in the solar system

- Early infall of material: forms the first material (CAIs)
- Late infall: separation of NC & CC
- Jupiter core formation: Separates the two reservoirs
- After asteroids formed:
  - Migration of Jupiter and Saturn
  - Mixes material in solar system (grand tack model)



after Kleine et al. (2020)

#### Stellar messengers in our solar system



#### For current-day messengers see **talk by Dominik Koll**, Wednesday morning

#### A zoo of presolar grains

- Nanodiamonds: ~10<sup>6</sup> atoms
- Silicon carbide: The hardy ones
- Graphites: Large but fragile
- Silicates: Small and fragile

...

#### Silicon Carbide (SiC) are the best studied phase due to their size and hardiness



#### Silicon carbide grains: Are they presolar?

- $\delta$ -units: Deviation from solar in ‰
- Extreme isotope compositions
- Determine provenance by analyzing Si, C, & N isotopes
- Hands-on astrophysical samples
  Stellar nucleosynthesis
  - Galactic chemical evolution

## Each grain contains its parent star's nucleosynthetic signature



#### Silicon carbide grains: Are they presolar?

- $\delta$ -units: Deviation from solar in  $\infty$
- Extreme isotope compositions
- Determine provenance by analyzing Si, C, & N isotopes
- Hands-on astrophysical samples
  Stellar nucleosynthesis
  - Galactic chemical evolution

## Each grain contains its parent star's nucleosynthetic signature



#### Asymptotic giant branch (AGB) stars

- **Copious** dust producers
- Host of the *s*-process
- Two important neutron sources  $^{\circ}$   $^{13}C(\alpha,n)^{16}O$ 
  - $\circ$  <sup>22</sup>Ne(a,n)<sup>25</sup>Mg
- Envelope well mixed
- Form SiC grains

## Presolar SiC grains: directly probe the stellar envelope!



#### V838 Monocerotis (Credit: ESA/Hubble)

#### The two neutron sources at work



#### $^{13}C(\alpha,n)^{16}O$

- Main *s*-process neutron source
- Neutron density:  $< 10^7 \text{ cm}^{-3}$
- Thousands of years

#### $^{22}Ne(\alpha,n)^{25}Mg$

- Bottom of He intershell
- Max. neutron density ~10<sup>9</sup> cm<sup>-3</sup>
- A few years

#### We can see these signatures in presolar grains!



- SiC condenses only if C/O > 1
- Heavier stars get hotter
  - Stronger <sup>22</sup>Ne( $\alpha$ ,n)<sup>25</sup>Mg
  - Produce more <sup>96</sup>Zr
- Nuclear physics complicates picture further
- Presolar grains allow deciphering stellar conditions

see, e.g., Liu et al. (20xx), Stephan et al. (2019)



- SiC condenses only if C/O > 1
- Heavier stars get hotter
  - Stronger <sup>22</sup>Ne( $\alpha$ ,n)<sup>25</sup>Mg
  - Produce more <sup>96</sup>Zr
- Nuclear physics complicates picture further
- Presolar grains allow deciphering stellar conditions

see, e.g., Liu et al. (20xx), Stephan et al. (2019)



- SiC condenses only if C/O > 1
- Heavier stars get hotter
  Stronger <sup>22</sup>Ne(α,n)<sup>25</sup>Mg
  - Produce more <sup>96</sup>Zr
- Nuclear physics complicates picture further
- Presolar grains allow deciphering stellar conditions

see, e.g., Liu et al. (20xx), Stephan et al. (2019)



- SiC condenses only if C/O > 1
- Heavier stars get hotter
  Stronger <sup>22</sup>Ne(α,n)<sup>25</sup>Mg
  - Produce more <sup>96</sup>Zr
- Nuclear physics complicates picture further
- Presolar grains allow deciphering stellar conditions

see, e.g., Liu et al. (20xx), Stephan et al. (2019)



- SiC condenses only if C/O > 1
- Heavier stars get hotter
  Stronger <sup>22</sup>Ne(α,n)<sup>25</sup>Mg
  - Produce more <sup>96</sup>Zr
- Nuclear physics complicates picture further
- Presolar grains allow deciphering stellar conditions

see, e.g., Liu et al. (20xx), Stephan et al. (2019)



- SiC condenses only if C/O > 1
- Heavier stars get hotter
  Stronger <sup>22</sup>Ne(α,n)<sup>25</sup>Mg
  - Produce more <sup>96</sup>Zr
- Nuclear physics complicates picture further
- Presolar grains allow deciphering stellar conditions

see, e.g., Liu et al. (20xx), Stephan et al. (2019)



## Molybdenum is especially interesting

| 44 | Ru 94                  | <b>Ru 95</b>          | Ru 96                  | Ru 97                  | Ru 98            | Ru 99           | Ru 100                   | Ru 101       | Ru 102                   | Ru 103           | Ru 104           |
|----|------------------------|-----------------------|------------------------|------------------------|------------------|-----------------|--------------------------|--------------|--------------------------|------------------|------------------|
|    | 51.8 m                 | 1.643 h               | 5.54                   | 2.8370 d               | 1.87             | 12.76           | 12.60                    | 17.06        | 31.55                    | 39.247 d         | 18.62            |
|    | <b>Tc 93</b><br>2.75 h | <b>Tc 94</b><br>293 m | <b>Tc 95</b><br>20.0 h | <b>Tc 96</b><br>4.28 d | Tc 97<br>4.21 My | Tc 98<br>4.2 My | <b>Tc 99</b><br>211.1 ky | Tc 100       | <b>Tc 101</b><br>14.22 m | Tc 102<br>5.28 s | Tc 103<br>54.2 s |
| 42 | Mo 92                  | <b>Mo 93</b>          | Mo 94                  | Mo 95                  | Mo 96            | Mo 97           | Mo 98                    | <b>Mo 99</b> | Mo 100                   | <b>Mo 101</b>    | Mo 102           |
|    | 14.53                  | 4.0 ky                | 9.15                   | 15.84                  | 16.67            | 9.60            | 24.39                    | 65.976 h     | 9.82                     | 14.61 m          | 11.3 m           |
|    | Nb 91                  | Nb 92                 | Nb 93                  | Nb 94                  | <b>Nb 95</b>     | <b>Nb 96</b>    | Nb 97                    | Nb 98        | Nb 99                    | Nb 100           | Nb 101           |
|    | <sup>680 y</sup>       | 34.7 My               | 100.                   | 20.4 ky                | 34.991 d         | 23.35 h         | 72.1 m                   | 2.86 s       | 15.0 s                   | 1.5 s            | 7.1 s            |
|    | 50                     |                       | 52                     |                        | 54               |                 | 56                       |              | 58                       |                  | <sub>60</sub> n  |

#### Measurements indicate constant *r/p* isotope production



Stephan et al. (2019)

- <sup>92</sup>Mo not made in s-process but destroyed
- Extrapolation towards no-<sup>92</sup>Mo yield pure *s*-process composition
- This would be possible for other elements, e.g., Ru, Sm, and (maybe) Pt

## The galactic chemical evolution (GCE) puzzle



- Presolar grains are older than the solar system
- Many of them are enriched in <sup>29</sup>Si and <sup>30</sup>Si compared to the sun
- Heterogeneous GCE
- GCE models predict a slope ~1 line for correlation
- Actual measurements show slope
  - 1.34 (Stephan et al., 2024)

#### What is going on?

## The influence of nuclear reaction rates on the slope



Fok et al. (in review)

## Stellar nucleosynthesis effects





Nuclear reaction rate uncertainties have a large influence, especially on <sup>29</sup>Si

Fok et al. (in review)

#### C-O shell mergers complicate the picture further



- Ritter et al. (2017) proposed shell mergers solve abundance of odd-Z elements
- Isotopes do not agree and are a much finer probe!

## Nuclear reaction rate uncertainties could explain the model-data discrepancy



## Presolar grain analysis: Hands-on astrophysics...

- Isotopic messenger
- Fine probes for many processes
  - s-process nucleosynthesis
  - Rare nucleosynthesis processes
  - $\circ$  GCE
  - •
- Recent advances in measurement techniques

#### Stay tuned!



SiC grain imaged in the secondary electron microscope

#### ... or astronomy with a microscope



xkcd.com

## Acknowledgement

| Brandeis<br>UNIVERSITY                    | Hung Kwan Fok <sup>*</sup>                                                                                            |
|-------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| Lawrence Livermore<br>National Laboratory | Jutta Escher, Jason Harke, Richard Hughes, Brett Isselhardt, Wei<br>Jia Ong, Mike Savina, Ziva Shulaker, Barbara Wang |
| THE UNIVERSITY OF CHICAGO                 | Andy Davis, Mike Pellin, Philipp Heck, Thomas Stephan                                                                 |
| KONKOLY                                   | Benoit Côté <sup>*</sup> , Marco Pignatari <sup>*</sup> , Maria Lugaro                                                |
|                                           | NuGrid collaboration <sup>*</sup>                                                                                     |